Морфология и физиология вирусов микробиология. Общая характеристика вирусов

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Морфологию и структуру вирусов изучают с помощью электронного микроскопа. Одним из самых мелких является вирус полиомиелита (около 20 нм), наиболее крупным - натуральной оспы (около 350 нм).

Вирусы состоят из следующих основных компонентов:

1. Сердцевина - генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса.

2. Белковая оболочка, которую называют капсидом (от латинского capsa - ящик). Она часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

3. Дополнительная липопротеидная оболочка (суперкапсид). Она образована из плазматической мембраны клетки-хозяина и встречается только у сравнительно больших вирусов (грипп, герпес).

Схематично строение РНК-содержащего вируса со спиральным типом симметрии и дополнительной липопротеидной оболочкой приведено слева на рисунке, справа показан его увеличенный поперечный разрез.

Капсид и дополнительная оболочка несут защитные функции, как бы оберегая нуклеиновую кислоту. Кроме того, они способствуют проникновению вируса в клетку. Полностью сформированный вирус называется вирионом.

Форма вирионов зависит от способа укладки белковых субъединиц в капсиде. Эта укладка может иметь спиральную или кубическую симметрию. Бактериофаги имеют смешанный или комбинированный тип симметрии.

У вируса табачной мозаики и РНК и белковые субъединицы располагаются по спирали и он имеет нитевидную или палочковидную форму. При такой симметрии белковый чехол лучше защищает нуклеиновую кислоту, но при этом требуется большее количество белка, чем при кубической симметрии. Истинное число субъединиц у разных вирионов равно 60 или кратно этой величине (420 субъединиц у вируса полиомы, 540 – у реовируса, 960 – у вируса герпеса, 1500 – у аденовируса).

Большинство вирусов с замкнутым чехлом обладает кубической симметрией. В ее основе лежат различные комбинации равносторонних треугольников (капсомеров), образованных шаровидными белковыми субъединицами. При этом могут образовываться тетраэдры, октаэдры и икосаэдры. Икосаэдры имеют 20 треугольных граней и 12 вершин. Это самая эффективная и экономичная симметрия. Поэтому сферические вирусы животных чаще всего имеют форму икосаэдра.

У вируса гриппа нуклеокапсид имеет палочковидную спиральную структуру, а суперкапсидная липопротеиновая оболочка придает вириону сферическую форму.

Число капсомеров для вирусов данного вида является постоянным и имеет диагностическое значение.

Просто устроенные вирусы имеют только капсид (вирус полиомиелита), сложноустроенные вирусы еще и суперкапсид (вирусы кори, гриппа).

В основу классификации вирусов положены следующие категории .

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

2. Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.

3. Культивирование вирусов

Основные методы культивирования вирусов:
1) биологический - заражение лабораторных животных.
При заражении вирусом животное заболевает. Если болезнь не
развивается, то патологические изменения можно обнаружить
при вскрытии. У животных наблюдаются иммунологические
сдвиги. Однако далеко не все вирусы можно культивировать
в организме животных;
2) культивирование вирусов в развивающихся куриных
эмбрионах. Куриные эмбрионы выращивают в инкубаторе
7-10 дней, а затем используют для культивирования. В этой
модели все типы зачатков тканей подвержены заражению.
Но не все вирусы могут размножаться и развиваться в кури-
ных эмбрионах.
В результате заражения могут происходить и появляться:
1) гибель эмбриона;
2) дефекты развития: на поверхности оболочек появляются
образования - бляшки, представляющие собой скопления по-
гибших клеток, содержащих вирионы;
3) накопление вирусов в аллантоисной жидкости (обнаружи-
вают путем титрования);
4) размножение в культуре ткани (это основной метод куль-
тивирования вирусов).
Различают следующие типы культур тканей:
1) перевиваемые - культуры опухолевых клеток; обладают
большой митотической активностью;
2) первично трипсинизированные - подвергшиеся первичной
обработке трипсином; эта обработка нарушает межклеточные
связи, в результате чего выделяются отдельные клетки. Источ-
28
ником являются любые органы и ткани, чаще всего - эмбрио-
нальные (обладают высокой митотической активностью).
Для поддержания клеток культуры ткани используют спе-
циальные среды. Это жидкие питательные среды сложного соста-
ва, содержащие аминокислоты, углеводы, факторы роста, источ-
ники белка, и индикаторы для оценки развития
клеток культуры ткани.
О репродукции вирусов в культуре ткани судят по их цитопа-
тическому действию, которое носит разный характер в зависимо-
сти от вида вируса.
Основные проявления цитопатического действия вирусов:
1) размножение вируса может сопровождаться гибелью кле-
ток или морфологическими изменениями в них;
2) некоторые вирусы вызывают слияние клеток и образова-
ние многоядерного синцития;
3) клетки могут расти, но делиться, в результате чего образу-
ются гигантские клетки;
4) в клетках появляются включения (ядерные, цитоплазмати-
ческие, смешанные). Включения могут окрашиваться в розо-
вый цвет (эозинофильные включения) или в голубой (базо-
фильные включения);
5) если в культуре ткани размножаются вирусы, имеющие
гемагглютинины, то в процессе размножения клетка приобре-
тает способность адсорбировать (гемадсорбция).
4. Особенности противовирусного иммунитета
Противовирусный начинается со стадии презента-
ции вирусного Т-хелперами.
Сильными антигенпрезентирующими свойствами при вирус-
ных инфекциях обладают дендритные клетки, а при простом гер-
песе и ретровирусных инфекциях - клетки Лангерганса.
направлен на нейтрализацию и удаление из орга-
низма вируса, его и зараженных вирусом клеток. Анти-
тела, образующиеся при вирусных инфекциях, действуют непо-
средственно на вирус или на клетки, инфицированные им. В этой
связи выделяют две основные формы участия в развитии
противовирусного иммунитета:
1) нейтрализацию вируса антителами; это препятствует рецеп-
ции вируса клеткой и проникновению его внутрь. Опсонизация
вируса с помощью способствует его фагоцитозу;
29
2) иммунный лизис инфицированных вирусом клеток с участи-
ем . При действии антител на антигены, экспресси-
рованные на поверхности инфицированной клетки, к этому
комплексу присоединяется комплемент с последующей его
активацией, что и обуславливает индукцию комплементзави-
симой цитотоксичности и гибель инфицированной вирусом
клетки.
Недостаточная концентрация антител может усиливать репро-
дукцию вируса. Иногда антитела могут защищать вирус от дей-
ствия протеолитических ферментов клетки, что при сохранении
жизнеспособности вируса приводит к усилению его репликации.
Вируснейтрализующие антитела действуют непосредственно
на вирус лишь в том случае, когда он, разрушив одну клетку, рас-
пространяется на другую.
Когда вирусы переходят из клетки в клетку по цитоплазмати-
ческим мостикам, не контактируя с циркулирующими антителами,
то основную роль в становлении иммунитета играют клеточные
механизмы, связанные прежде всего с действием специфических
цитотоксических , Т-эффекторов и макрофагов.
Цитотоксические непосредственно контактируют
с клеткой-мишенью, повышая ее проницаемость и вызывая осмо-
тическое набухание, разрыв мембраны и выход содержимого
в окружающую среду.
Механизм цитотоксического эффекта связан с активацией
мембранных ферментных систем в зоне прилипания клеток, обра-
зованием цитоплазматических мостиков между клетками и дей-
ствием лимфотоксина. Специфические Т-киллеры появляются
уже через 1-3 дня после заражения организма вирусом, их ак-
тивность достигает максимума через неделю, а затем медленно
понижается.
Одним из факторов противовирусного иммунитета является
интерферон. Он образуется в местах размножения вируса и вызы-
вает специфическое торможение транскрипции вирусного генома
и подавление трансляции вирусной мРНК, что препятствует накоп-
лению вируса в клетке-мишени.
Стойкость противовирусного иммунитета вариабельна. При ря-
де инфекций (ветряной оспе, паротите, кори, краснухе)
достаточно стойкий, а повторные заболевания встречаются крайне
редко. Менее стойкий иммунитет развивается при инфекциях ды-
хательных путей (гриппе) и кишечного тракта.

Вирусы являются самыми мелкими из всех микроорганизмов. Для них принято измерение в миллимикронах и в ангстремах. Для определения таких размеров частиц применяется несколько методов. Так, взвесь вирусов пропускают через особые фильтры из коллодия, имеющие очень мелкие поры определенной величины. Фильтрование производят через несколько фильтров с разной величиной пор. Разница между диаметрами пор последнего фильтра, пропустившего вирусные частицы, и фильтра, уже не пропустившего вирусные частицы, указывает средние размеры вирусных частиц. При сверхскоростном центрифугировании (50 и более тысяч оборотов в минуту) величина вирусных частиц определяется по специальной формуле в зависимости от числа оборотов и времени осаждения частиц. При этом происходит и очистка вируса от посторонних веществ. Для этого подбирают такие скорости, при которых выпадают посторонние частицы, сначала крупные, а потом самые мелкие. При наиболее высокой скорости получают лишь частицы вируса.

Человек увидел вирусы только после 1940 г., когда был построен и усовершенствован электронный микроскоп. При увеличении в десятки и сотни тысяч раз удалось изучить форму, величину, а также строение частиц некоторых вирусов.

Было найдено, что как величина, так и форма отдельных особей (элементарных частиц) разных видов вирусов довольно разнообразны. Имеются крупные вирусы (например, вирус орнитоза, оспы, трахомы и др.), вирусы средних размеров (гриппа, чумы, бешенства) и мелкие (вирус полиомиелита, кори, ящура, энцефалитов, вирусы многих растений). В таблице приводятся размеры некоторых вирусов, определенные разными способами, в миллимикронах (по В. М. Жданову и Шен).

Самые крупные вирусы приближаются по своим размерам к самым мелким бактериям, а самые мелкие вирусы близки к крупным белковым молекулам.

По внешнему виду одни вирусы имеют шарообразную форму (вирус гриппа), другие - кубовидную форму (вирус оспы), третьи - вид палочки. Вирус табачной мозаики (ВТМ) имеет вид тонкой шестигранной палочки длиной 300 ммк и в диаметре 15 ммк.

При многих вирусных инфекциях (оспа, бешенство, трахома и др.) наблюдаются в цитоплазме или ядре клетки организма хозяина особые, специфические для каждой инфекции внутриклеточные тельца - включения. Они довольно крупные, и их можно видеть в световой микроскоп.

В большинстве случаев включения представляют собой скопление элементарных телец, вирусных частиц, как бы их колонию. Наличие их в клетках помогает при диагностике некоторых заболеваний.

Одним из своеобразных свойств многих вирусов растений является их способность образовывать кристаллы. Д. И. Ивановский первый наблюдал в листьях табака, пораженных ВТМ, включения, называемые теперь кристаллами Ивановского. Они состоят из элементарных частиц вируса табачной мозаики. Кристаллы вируса можно растворять, как растворяют сахар, соль. Из раствора этот вирус можно выделить в аморфном, некристаллическом, состоянии. Осадок можно вновь растворить, затем снова превратить в кристаллы. Если растворить кристаллический вирус в тысячу раз, то капля такого раствора вызовет у растения мозаичную болезнь. Из вирусов человека и животных пока получены кристаллы вируса полиомиелита. Каждый кристалл состоит из миллионов вирусных частиц.

Химический состав вирусов был изучен прежде всего у возбудителя табачной мозаики. Этот вирус представляет собой чистый нуклеопротеид, т. е. состоит из белка и нуклеиновой кислоты. Вирусный нуклеопротеид табачной мозаики имеет огромный молекулярный вес (40-50 млн.).

Вирусная частица имеет сложное строение. Нуклеиновая кислота находится внутри вирусной частицы, она окружена белковой оболочкой. В вирусной частице обычно содержится одна молекула нуклеиновой кислоты.

Вирусы растений содержат рибонуклеиновую кислоту, фаги содержат дезоксирибонуклеиновую кислоту. В вирусах человека и животных находится или РНК, или ДНК. РНК содержится в вирусах гриппа (1,6%), полиомиелита (24%), некроза табака (18%), мозаики табака (6%), ящура (40%), саркомы Рауса (10%) и др. ДНК содержится в вирусах осповакцин (6%), папилломы (6,8%), герпеса (3,8%), полиомы (12%) и др.

Теперь интенсивно изучается вопрос, как соединяются белок и нуклеиновая кислота, как они подогнаны друг к другу. Для разрешения этого вопроса пользуются методом рентгенокристаллографии. Если в вирусной частице имеются субъединицы, то этот метод может установить их число, а также их взаимное расположение. Оказалось, что для большинства вирусов характерно закономерное, высокоупорядоченное расположение элементов вирусной частицы.

У вируса полиомиелита нуклеиновая кислота свернута в клубок, белковая оболочка состоит из 60 одинаковых субъединиц, которые объединены в 12 групп, по 5 субъединиц в каждой. Частица вируса имеет сферическую форму.

Нуклеиновая кислота вируса табачной мозаики имеет вид спирали или пружины. Белковая оболочка ВТМ состоит также из отдельных одинаковых по форме и размерам белковых субъединиц. Всего имеется 2200 субъединиц, расположенных в виде 130 витков вокруг стержня нуклеиновой кислоты. Молекулярный вес такой субъединицы 18 000. Каждая субъединица представляет собой пептидную цепочку, содержащую 158 определенных аминокислот, причем уже определено последовательное расположение этих аминокислот. В настоящее время интенсивно изучается последовательность расположения 6500 нуклеотидов, образующих нуклеиновую кислоту. Когда эта задача будет решена, то станет известен план, которым определяется тип вируса, образующегося в зараженной клетке. Строение, подобное частицам ВТМ и полиомиелита, имеют другие мелкие вирусы растений.

У более крупных вирусов, кроме нуклеиновой кислоты, белковой оболочки, есть еще внешние оболочки, содержащие белки, липоиды, углеводы. Некоторые вирусы содержат ферменты. Так, гриппозный вирус имеет фермент нейраминидазу, парагриппозный вирус - сендай-лизин, вирус миелобластоза птиц содержит аденовинтрифосфатазу. Эти ферменты растворяют оболочку клеток для проникновения вируса в тело своего будущего хозяина.

В свободном состоянии, во внешней среде вне живой клетки, вирусы не проявляют активности, они только сохраняют свою жизнеспособность, иногда продолжительное время. Но как только вирусы встречаются с чувствительными к ним клетками, они становятся активными, внедряются в них и проявляют все признаки жизнедеятельности.

Единственным методом изучения жизнедеятельности вирусов раньше было заражение восприимчивых к ним опытных животных: мышей, кроликов, обезьян и др. Более удобно и экономно выращивать вирусы в развивающемся зародыше куриного яйца. Материал, содержащий вирус, вводят шприцем в зародыш на 8-12-й день его развития. Через несколько дней пребывания зародыша в термостате изучают патологические изменения, вызываемые вирусом в зародыше. Затем пересевают в свежий зародыш другого яйца. В последнее время получил наибольшее применение метод однослойных культур из изолированных клеток животных тканей. Размельченную свежую ткань обрабатывают ферментом трипсином, который разрушает межклеточные связи. Освободившиеся клетки отмывают от трипсина, разводят питательным составом (№ 199, содержащим необходимые аминокислоты и соли) и помещают в пробирки или в специальные плоские чашки. В термостате клетки размножаются, образуя однослойный пласт по стеклу. Затем эту культуру однородных клеток заражают вирусом и происходящие в ней процессы изучают под микроскопом или другими способами. Так трудоемкий и дорогой способ, например культура вируса полиомиелита на печени обезьян, был заменен быстрым способом выращивания его в тканевой культуре.

В 1955 г. и позднее были получены необычные факты, вызвавшие недоумение у ученых биологов. Химическим путем вирус табачной мозаики был разделен на свои составные части: белок и нуклеиновую кислоту. Каждая из них в отдельности не вызывала заболевания мозаикой у листьев табака. Но когда их опять соединили вместе в пробирке (10 частей белка и 1 часть нуклеиновой кислоты) и заразили этой смесью листья табака, то получили типичную мозаику на листьях, как от исходного цельного ВТМ. При электронной микроскопии были найдены типичные палочки вируса, состоящие из белковой оболочки, в которой был заключен тяж нуклеиновой кислоты. Таким образом, нуклеиновая кислота связалась с белковой частью и заняла в ней свое нормальное положение. Открытие этого явления - ресиитеза (восстановления) вируса - является крупнейшим достижением современной микробиологии, открывающим новые пути в биологии и медицине.

Далее оказалось, что достаточно натереть лист табака лишь одной нуклеиновой кислотой, выделенной из ВТМ мягким способом, как на листе возникают (конечно, не в большом количестве) типичные некрозы, в которых находились в огромном количестве типичные цельные вирусные частицы.

Такие же результаты были получены с вирусами человека: полиомиелита, гриппа и др.

Выл получен даже гибридный вирус мозаики табака из белка одного типа вируса и РНК другого типа вируса, отличавшегося по некоторым признакам от вируса первого типа. При размножении этот гибридный вирус давал потомство только того вируса, чью РНК содержал гибрид.

Все эти факты говорят о том, что нуклеиновым кислотам принадлежит ведущая роль в размножении вирусов и инфекциозности их. Нуклеиновые кислоты обеспечивают передачу наследственных свойств. В кислотах заключена наследственная информация по синтезу полноценных вирусных частиц внутри клетки.

Белковая оболочка вируса несет защитную функцию, охраняя от внешних воздействий хрупкую нить нуклеиновой кислоты, кроме того, помогает вирусу проникать в клетку, определяет специфичность вирусов. Но некоторые ученые не считают возможным так ограничивать значение белков. Нужны дальнейшие исследования о роли вирусных белков.

Процесс размножения вирусов принципиально отличается от процесса размножения бактерий, простейших и других клеточных организмов.

Различают четыре фазы этого процесса: прикрепление вирусных частиц к клетке хозяина, проникновение вируса внутрь клетки, внутриклеточное размножение вируса и выход новых частиц вируса из клетки.

Первая фаза - прикрепление, или адсорбция, вируса к клетке - изучена в отношении вирусов гриппа и полиомиелита. Стенка клетки имеет мозаичное строение, в одних местах ее выступают молекулы мукопротеидов, в других молекулы липопротеидов. Вирус гриппа адсорбируется на мукопротеидах, а вирус полиомиелита адсорбируется на липопротеидах. Адсорбцию можно наблюдать в электронный микроскоп. В месте адсорбции вируса на стенке клетки образуется углубление, куда втягивается частица вируса. Края углубления смыкаются, и частица вируса оказывается внутри клетки (виропексис). Одновременно с виропексисом происходит разрушение белковой оболочки вируса. Проникновению вируса гриппа в клетку способствует фермент его оболочки. Таким образом, в клетку проникает нуклеиновая кислота, освобожденная от белковых оболочек с помощью ферментов самой клетки.

В третьей фазе проникшая в клетку вирусная нуклеиновая кислота включается в обмен веществ клетки и направляет аппарат синтеза клетки на производство белка и нуклеиновой кислоты не клетки, а новых вирусных частиц. Деятельность ферментов, участвующих в синтезе вируса, активизируется, а остальных ферментов тормозится. Кроме того, создаются новые ферменты, которых клетка не имела, но которые необходимы для синтеза вирусных частиц. Можно полагать, что в это время организуется новая единая система вирус - клетка, переключенная на синтез вирусного материала. В начале этой фазы не удается различить в клетке какие-либо элементы вируса.

Обычно нуклеиновые кислоты и белки вируса синтезируются не одновременно и в разных местах клетки. Сначала начинается синтез нуклеиновой кислоты, а затем несколько позднее идет синтез белка. После накопления этих составных частей вируса происходит их объединение, сборка в полноценные вирусные частицы. Иногда образуются неполные вирусные частицы, лишенные нуклеиновой кислоты и потому неспособные к самопроизводству (бублики).

Быстро наступает последняя фаза - выход вирусных частиц из клетки. В каком-либо месте клетки сразу выходит около 100 частиц вируса, У более сложных вирусов имеются еще внешние оболочки вирусного нуклеопротеида, которыми они обволакиваются во время прохождения через клетку и выхода из нее, при этом в состав внешних оболочек входят белки клетки хозяина.

У вирусов человека и животных выход нового потомства происходит в несколько циклов. Так, у вируса гриппа каждый цикл продолжается часов 5-6 с выходом 100 и более вирусных частиц одной клетки, а всего наблюдается 5-6 циклов в течение 30 часов. После этого способность клетки производить вирус истощается, и она погибает. Весь процесс размножения парагриппозного вируса Сен дай от адсорбции до выхода из клетки продолжается 5-6 часов.

Иногда частицы вируса не выходят из клетки, а скапливаются в ней в виде внутриклеточных включений, очень характерных для разных видов вирусов. Вирусы растений образуют включения, имеющие кристаллическую форму.

Большое внимание начинает привлекать к себе семейство микробов, получившее название "микоплазма", так как за последнее время в этой группе обнаружены возбудители различных заболеваний человека и животных. В виде скрытой инфекции они часто обитают во многих тканевых культурах - Хела и др. Микоплазмы занимают промежуточное положение между бактериями и вирусами. С вирусами их сближает фильтруемость через бактериальные фильтры, фильтрующиеся формы способны к саморепродукции, внутриклеточному размножению. К признакам, сближающим вирусы с бактериями, относится способность расти на питательных средах, образовывать на них колонии, а также отношение к антибиотикам, сульфамидам и их антигенная структура.

Читайте также: