Металлы в военном деле. Химические вещества в военном деле

Химия на военной службе.
Дню Победы посвящается.
разботка интегрированного
внеклассного мероприятие
Химии и ОБЖ
учитель Асанова Н.А.

Москва, 2016
Интерактивный устный журнал «Химия на военной службе»
Дню Победы посвящается.
Цели:
1.Расширить знания учащихся о химических элементах и веществах,
применяемых в военном деле.
2.Развивать межпредметные связи, умение работать с различными источниками
информации, мультимедийными презентациями.
3.Формирование интернациональных чувств, чувства патриотизма.
Популяризация химических знаний.
Оборудование: Компьютер, мультимедийный проектор.
План организации подготовки к проведению устного журнала.
1.Разделить класс на группы, дать задание: найти материал и сделать
презентацию:
1 группа: о химических элементах и веществах, применяемых в военном деле
2группа: о боевых отравляющих веществах,о взрывчатых веществах,о полимерах.
2.По своей теме подготовить тест или вопросы для игры на приз журнала ­
«Лучший слушатель».
Ход мероприятия.
Вступительное слово учителя об актуальности темы.
Слайд № 2­3 музыка «Священная война».

Ведущий: «Широко распростирает химия руки свои в дела человеческие» - эти
слова М. В. Ломоносова никогда не потеряют актуальности. Слайд № 4. В
современном обществе, пожалуй, нет такой отрасли производства, которая не
была бы так или иначе связана с этой наукой. Химия необходима и тем, кто по­
святил свою жизнь важной профессии, суть которой - защищать Родину.
Материалы устного журнала позволят вам узнать, что даёт армии химическая
наука.
Слайд № 6. Страница 1.
Химические элементы в военном деле
Перед вами Периодическая система химических элементов Д. И. Менделеева.
Многие элементы образуют вещества, широко используемые в военном деле.
Слайд № 7. Элемент № 1. На энергии термоядерной реакции с участием
изотопов водорода - дейтерия и трития, идущей с образованием гелия и
выделением нейтронов, основано действие водородной бомбы. Водородная
бомба превосходит по своей силе атомную.
Слайд № 8. Элемент № 2. Гелием наполняют дирижабли. Заполненные,
гелием летательные аппараты, в отличие от заполненных водородом, более
безопасны.
Гелий необходим и подводникам. Аквалангисты дышат сжиженным воздухом.
При работе на глубине 100 м и более азот начинает растворяться в крови. При
подъёме с большой глубины он быстро выделяется, что может привести к
нарушениям в организме. Значит, подъём должен быть очень медленным. При
замене азота гелием таких явлений не происходит. Гелиевый воздух использует
морской спецназ, для которого главное - быстрота и внезапность
Слайд № 9. Элемент № 6. Углерод входит в состав органических веществ,
которые составляют основу горюче­смазочных, взрывчатых, отравляющих
веществ. Уголь входит в состав пороха и используется в противогазах.
Слайд № 10. Элемент № 8. Жидкий кислород используют как окислитель
топлива для ракет и реактивных самолётов. При пропитывании жидким
кислородом пористых материалов получают мощное взрывчатое вещество -
оксиликвит.

Слайд № 11. Элемент № 10. Неон - инертный газ, которым заполняют
электролампы. Неоновый свет далеко виден даже в тумане, поэтому неоновые
лампы применяют на маяках, в сигнальных установках различных типов.
Слайд № 12.Элемент № 12. Магний горит ослепительным белым пламенем с
выделением большого количества теплоты. Это свойство используют для
изготовления зажигательных бомб и осветительных ракет. Магний входит в со­
став сверхлёгких и прочных сплавов, используемых в самолётостроении.
Слайд № 13.Элемент № 13. Алюминий - незаменимый металл для производства
лёгких и прочных сплавов, которые используются в самолёто­ и ракетостроении.
Слайд № 14.Элемент № 14. Кремний - ценный полупроводниковый материал,
при повышении температуры электропроводность его усиливаетсвается, что
позволяет использовать кремниевые приборы при высокой температуре.
Слайд № 15. Элемент № 15. Фосфор используется для изготовления напалмов и
ядовитых фосфор­органических веществ.
Слайд № 16. Элемент № 16. С давних времён сера используется в военном деле
как горючее вещество, она также входит в состав дымного пороха,.
Слайд № 17.Элемент № 17. Хлор входит в состав многих отравляющих веществ.
Элемент № 35. Бром входит в состав слезоточивых отравляющих веществ -
лакриматоров. Элемент № 33. Мышьяк входит в состав боевых отравляющих
веществ.
Слайд № 18. Элемент № 22. Титан придаёт сталям твёрдость, эластичность,
высокую коррозионную устойчивость. Эти свойства незаменимы для
оборудования морских кораблей и подводных лодок.
Слайд № 19. Элемент № 23. Ванадиевая сталь, упругая, прочная на истирание и
разрыв, стойкая к коррозии, используется для строительства небольших
быстроходных морских кораблей, гидросамолётов, глиссеров.
Слайд № 20. Элемент № 24. Хром применяется получения специальных сталей,
изготовления орудийных стволов, броневых плит. Стали, содержащие более 10%
хрома, почти не ржавеют, из них делают корпуса подводных лодок.
Слайд № 21. Элемент № 26. В Античности и в Средние века железо изображали
в виде бога войны Марса. Во время войны железо расходуется в огромных
количествах в снарядах, бомбах, минах, гранатах и других изделиях. Элемент №
53. Иод входит в состав поляроидных стёкол, которыми оснащены танки. Такие
стёкла позволяют водителю видеть поле битвы, гася ослепляющие блики пла­
мени. Элемент № 42. Молибденовые сплавы идут на изготовление сверхострого
холодного оружия. Добавка 1,5­2% этого металла в сталь делает броневые листы

танков неуязвимыми для снарядов, а обшивку кораблей - химически
устойчивой к действию морской воды.
Слайд № 22. Элемент № 29., Медь - первый металл, использованный
человеком. Из него делали наконечники копий. Позже его стали называть
пушечным металлом: сплав из 90% меди и 10% олова использовали для отливки
орудийных стволов. И сейчас главный потребитель меди - военная
промышленность: детали самолётов и судов, латунные гильзы, пояски для
снарядов, электротехнические детали - всё это и многое другое делают из
меди. Элемент № 30. Цинк вместе с медью входит в состав латуней - сплавов,
необходимых для военного машиностроения. Из него изготовляют гильзы
артиллерийских снарядов.
Слайд № 23. Элемент № 82. С изобретением огнестрельного оружия свинец стал
расходоваться в больших количествах на изготовление пуль для ружей и
пистолетов, картечи для артиллерии. Свинец защищает от губительного
радиоактивного излучения.
Слайд № 24. Элементы № 88, 92 и др. Соединения радиоактивных элементов
радия, урана и их собратьев - сырьё для изготовления ядерного оружия.
Слайд № 25­26. Тест. 1. Изготовление водородной бомбы основано на
применение:
а) изотопов водорода в) изотопов кислорода
б) изотопов гелия г) изотопов азота
2. Дирижабли делают:
а) водорода в) азота
б) гелия г) смесью водорода и гелия
3)Неоном заполняют электролампы применяемые на маяках и сигментных
установках т. к. он
а) красивый б) далеко светит в) дешёвый г)инертный
4. Для защиты от корозии корпуса подводных лодок делают из стали,
содержащих 10%:
а)Сu б)Zn в)Al г)Cr
5. Какой окислитель топлива для ракет и самолётов используется:

а) жидкий кислород б) бензин в) керосин г) водород
Ведущий. Страница 2.
Слайд № 27­28. Боевые отравляющие вещества
Инициатива применения боевых отравляющих веществ (ОВ) в качестве оружия
массового уничтожения принадлежит Германии. Впервые ядовитый газ хлор был
применён 22 апреля 1915 г. на Западном фронте недалеко от бельгийского
города Ипра против англо­французских войск. Первая газовая атака лишила
боеспособности целую дивизию, оборонявшую данный участок: 15 тыс. человек
были выведены из строя, из них 5 тыс. навсегда.
Примерно месяц спустя газовая атака была повторена на Восточном фронте
против русских войск. В ночь на 31 мая 1915 г. в районе польского городка
Болимова на участке фронта протяжённостью 12 км при ветре, дувшем в
сторону русских позиций, из 12 000 баллонов было выпущено 150 т ядовитого
газа. Передовые линии атакованного газами участка, представлявшие собой
сплошной лабиринт окопов и путей сообщения, были завалены трупами и
умиравшими людьми. Из строя выбыли 9 тыс. человек.
Английский поэт Уилфред Оуэн, погибший в Первую мировую войну, оставил
стихотворение, написанное под впечатлением газовой атаки:
Слайд № 29- Газ! Газ! Скорей! - Неловкие движенья, Натягивание масок в
едкой мгле...
Один замешкался, давясь и спотыкаясь,
Барахтаясь, как в огненной смоле,
В просветах мутного зелёного тумана.
Бессильный, как во сне, вмешаться и помочь,
Я видел только - вот он зашатался,
Рванулся и поник - бороться уж невмочь.
В память о первой газовой атаке отравляющее вещество
дихлордиэтилсульфидS(CH2CH2C1)2 было названо ипритом. Хлор содержится и
в составе дифосгена СС13ОС(О)С1. А вот табун (CH3)2NP(O)(OC2H5)CN ­ жид­
кость с сильным фруктовым запахом - производное цианфосфорной кислоты.
Отравляющие вещества, содержащие мышьяк, в отличие от других способны
пpоникать через примитивные противогаз. Вызывая нестерпимое раздражение

дыхательных путей, выражающееся в чиханье кашле, они заставляют человека
срывать маску и подвергаться воздействию удушающего газа.
Особую группу ОВ составляют вещества лакриматоры, вызывающие
слезотечение чиханье. Так, в 1918 г. американским химиком Р. Адамсом было
предложено вещество адамсит, содержащее и мышьяк, и хлор. Оно раздражает
верхние дыхательные пути, а также способно возгораться образуя тончайший
ядовитый дым.
Большинство лакриматоров содержат хлор и бром.
Современные боевые ОВ еще более страшны и безжалостны.
Для самозащиты, а также при антитеррористических операциях используют
менее токсичные вещества.
Слайд № 30. Страница 3.
Защита от отравляющих веществ
В 1785 г. помощник аптекаря (впоследствии русский академик) Товий Егорович
Ловиц обнаружил, что древесный уголь способен удерживать на своей
поверхности (адсорбировать) различные жидкие и газообразные вещества. Он
указал на возможность использования этого свойства для практических целей,
например для очистки воды. С 1794 %. активированный уголь стали применять
для очистки сахара­сырца. Явление адсорбции нашло оригинальное применение в
Англии, где с помощью угля очищали воздух, подаваемый в здание парламента.
Однако только во время Первой мировой войны это свойство стали использовать
в больших масштабах. Поводом для этого послужило применение отравляющих
веществ для массового поражения живой силы воюющих армий.
Начавшаяся химическая война готовила человечеству неисчислимые жертвы и
страдания. Создать защиту от ОВ позволило использование одной из
разновидностей аморфного углерода - древесного угля.
Слайд № 31­32. Выдающийся химик профессор Н. Д. Зелинский (впоследствии
академик) разработал, испытал и в июле 1915 г. предложил противогаз,
действующий на основе явления адсорбции, происходящей на поверхности
частиц угля. Прохождение отравленного воздуха через уголь полностью
освобождало его от примесей и предохраняло солдат," защищенных
противогазом, от боевых отравляющих веществ.
Изобретение Н. Д. Зелинского спасло множество человеческих жизней.

По мере разработки новых отравляющих веществ совершенствовался и
противогаз. Наряду с активированным углем в современном противогазе
используются и более активные адсорбенты.
Слайд № 33­34. Страница 4.
Взрывчатые вещества
Единого мнения по вопросу об изобретении пороха нет: считается, что огненный
порошок пришел к нам от древних китайцев, арабов, а может, его изобрёл
средневековый I монах­алхимик Роджер Бэкон.
На Руси специалистов по изготовлению «пушечного зелья» называли
зелейщиками.
Чёрный порох называют дымным. Много лет он окутывал клубами дыма поля
битв, делая неразличимыми людей и машины.
Шагом вперёд стало использование в военном деле взрывчатых органических ве­
ществ: они оказались более мощными и образовывали меньше дыма.
Среди органических веществ имеется группа нитросоединений, молекулы
которых содержат группу атомов -NO2. Эти вещества легко разлагаются, часто
со взрывом. Увеличение числа нитрогрупп в молекуле повышает способность
вещества взрываться. На основе нитросоединений и получают современные
взрывчатые вещества.
Производное фенола - тринитрофенол, или пикриновая кислота, способно
взрываться от детонации и под названием «мелинит» применяется для напол­
нения артиллерийских снарядов.
Производное толуола - тринитротолуол (тротил, тол) - одно из наиболее
важных дробящих взрывчатых веществ. Оно применяется в громадных
количествах для изготовления артиллерийских снарядов, мин, подрывных
шашек. Мощность других взрывчатых веществ сравнивают с мощностью тротила
и выражают в тротиловом эквиваленте.
Производное многоатомного спирта глицерина - нитроглицерин - жидкость,
взрывающаяся при поджигании, детонации и обычном встряхивании,. Нитро­
глицерин способен разлагаться почти мгновенно с выделением тепла и огромного
количества газов: 1 л его даёт до 10 000 л газов. Для стрельбы он не годится,
потому что разрывал бы стволы оружия. Он используется для подрывных работ,
но не в чистом виде (очень легко взрывается), а в смеси с пористой инфузорной
землёй или древесными опилками. Такую смесь называют динамитом. Промыш­
ленное производство динамита разработал Альфред Нобель. В смеси с

нитроклетчаткой нитроглицерин даёт студенистую взрывчатую массу -
гремучий студень.
Производное целлюлозы - тринитроцеллюлоза, иначе называемая пироксили­
ном, также обладает взрывчатыми свойствами и применяется для изготовления
бездымного пороха. Способ получения бездымного пороха (пироколлодия) был
разработан Д. И. Менделеевым.
Слайд № 35­36. Страница 5.
Волшебное стекло в армии
Стёкла, используемые в военной технике, должны обладать некоторыми
специфическими свойствами.
В армии нужна точная оптика. Добавление к исходным веществам соединений
галлия позволяет получать стёкла с высоким коэффициентом преломления
световых лучей. Такие стёкла применяют в системах наведения ракетных
комплексов и навигационных приборах. Стекло, покрытое слоем металлического
галлия, отражает практически весь свет, до 90%, что даёт возможность
изготовлять зеркала с большой точностью отражения. Подобные зеркала
используют в навигационных приборах и системах наведения орудий при
стрельбе по невидимым целям, в системах маяков, перископических системах
подводных лодок. Эти зеркала выдерживают очень высокую температуру,
поэтому их используют в ракетной технике. Для усиления оптических свойств в
сырьё для производства стекла добавляют также соединения германия.
Широкое применение находит инфракрасная оптика: стёкла, хорошо
пропускающие тепловые лучи, используют в приборах ночного видения. Такие
свойства стеклу придаёт оксид галлия. Приборы применяют разведывательные
группы, пограничные дозоры.
Ещё в 1908 г. был разработан метод получения тонких стеклянных волокон, но
лишь недавно учёные предложили делать двухслойные стекловолокна -
световоды, которые используют в армейской системе связи. Так, кабель
толщиной 7 мм. составленный из 300 отдельных волокон, обеспечивает одно­
временно 2 млн. телефонных переговоров.
Введение в стекло оксидов металлов в разных степенях окисления придаёт
стеклу электропроводность. Подобные полупроводниковые стёкла используют
для телевизионной аппаратуры космических ракет.
Стекло - материал аморфный, но сейчас получают и кристаллические
стекломатериалы - ситаллы. Некоторые из них имеют твёрдость, сравнимую с

твёрдостью стали, и коэффициент теплового расширения почти такой, как у
кварцевого стекла, выдерживающего резкие перепады температур.
Слайд № 37­38. Страница 6.
Использование полимеров в военно­промышленном комплексе
XX в. называют веком полимерных материалов. Полимеры широко применяются
в военной промышленности. Пластмассы заменили древесину, медь, никель и
бронзу, другие цветные металлы в конструкции самолётов и автомашин. Так, в
боевом самолёте в среднем 100 000 деталей, изготовляемых из пластмасс.
Полимеры необходимы для изготовления отдельных элементов стрелкового
оружия (рукоятки, магазины, приклады), корпусов некоторых мин (обычно
противопехотных) и взрывателей (для затруднения обнаружения их
миноискателем), изоляции электропроводки.
Также из полимеров производят антикоррозионные и гидроизоляционные
покрытия стаканов шахт ракетных комплексов и колпаки контейнеров
подвижных боевых ракетных комплексов. Корпуса многих электроприборов,
приборов радиационной, химической и биологической защиты, элементы
управления приборами и системами (тумблеры, переключатели, кнопки) сделаны
из полимеров.
Для современной техники нужны материалы, обладающие химической
стойкостью при повышенной температуре. Такими свойствами обладают волокна
из фторсодержащих полимеров - фторопластов, которые устойчивы при
температуре от ­269 до +260 °С. Фторопласты используют для изготовления
аккумуляторных ёмкостей: наряду с химической стойкостью они обладают проч­
ностью, что важно в полевых условиях. Высокая термостойкость и химическая
устойчивость позволяют использовать фторопласты как электроизоляционный
материал, применяемый в экстремальных условиях: в ракетной технике, полевых
радиостанциях, подводном оборудовании, подземных ракетных шахтах.
С развитием современных видов вооружения стали востребованы вещества,
способные выдерживать высокую температуру в течение сотен часов.
Конструкционные материалы, произведённые на основе термостойких волокон,
применяют в самолёто­ и вертолёто­строении.
Полимеры используют и как взрывчатые вещества (например, пироксилин).
Современные пластиды также имеют полимерное строение.
Ведущий: Закрыта последняя страница журнала.

Вы убедились, что химические знания необходимы для укрепления
обороноспособности нашей Родины, а мощь нашей державы - надёжный оплот
мира.
Вопросы на приз лучший слушатель:
1. Какой газ впервые был применён как ОВ?
2. Как назывался этот газ?
3. Какое вещество обладает адсорбирующими свойствами?
4. Кто изобрёл первый противогаз?
5. Почему чёрный порох называют дымным?
6. Какие вещества используют сейчас для производства более мощных
взрывчатых веществ?
7. Кто разработал получение бездымного пороха?
8. Производство какого взрывчатого вещества разработал Альфред Нобель?
9. Какие свойства полимерных материалов используют в военно­
промышленном комплексе?
Методобеспечение.
1. Научно ­ методический журнал «Химия в школе» - М.: Центрхимпресс,
№4, 2009
2. Интернетрессурсы

«История химии» - М 6. Образование тумана. Н 8. Фотосинтез. П 9. Испарение жидкой ртути. Д.И. Менделеев. Цель: знакомство с физическими и химическими явлениями, историей развития химии. Агрикола горное дело. Я 11.Образование ржавчины на гвозде. И 10.Подгорание пищи на перегретой сковороде. А.М. Бутлеров. Е 7. Почернение серебряных изделий.

«История химии как науки» - Аррениус. Больцман. Бор. Бойль. Новые методы исследования. Достижения алхимии. Великие ученые – химики. Органическая химия. Атомная теория. Пневматическая химия. Бертло. Бекетов. Авогадро. Промышленная химия. Биохимия. Техническая химия. Алхимия. Берцелиус. Ятрохимия. Структурная химия. Греческая натурфилософия.

«Начало химии» - Покорение огня. Шумеры. Производство керамики. Фармакопея. Источники знаний. Предалхимический период в истории химии. Глина. Найдены два папируса. Сок растения. Происхождение слова «химия». Папирус Эберса. Множество химических ремесел.

«Стихи о химии» - Если здесь метилбурат. В беге жизни и забот Ваш « безжизненный» азот! Клянемся мы – решать задачи! Высший класс – дешевое, простое. Не угаснет на оксиды, поверьте, спрос, Ведь лучшего класса в мире нет! Спичку взяли только в руки, И засиял огонь в момент. Ну конечно не со всеми, Чаще в виде удобрений.

«Михаил Кучеров» - Общий вклад в развитие химии. Реакция Кучерова позволила получать уксусную кислоту в промышленных масштабах. Кучеров Михаил Григорьевич. Цели нашей работы. Данное свойство было использовано Кучеровым для присоединения воды к ацетиленам. В лабораторных исследованиях реакция Кучерова используется по сегодняшний день.

«Вклад Ломоносова в химию» - Химия. Закон сохранения вещества. Вклад Ломоносова. Подробный проект. Ломоносов провел серию опытов. Ломоносов. Истинный химик. М.В. Ломоносов. Широкая программа физико-химических опытов. Стол химика. Закон сохранения массы.

Всего в теме 31 презентация

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФАКУЛЬТЕТ ЕСТЕСТВЕННЫХ НАУК

КАФЕДРА ХИМИИ

РЕФЕРАТ НА ТЕМУ:

«ХИМИЯ В ВОЕННОМ ДЕЛЕ»

Выполнила студентка 4 курса 9 группы,

специальность 050101 «Химия»

Ярмоленко Ю.В.

  • Введение
  • 1. Органические вещества в военном деле
  • 2. Неорганические вещества в военном деле
  • Заключение

Введение

Мы живём в мире различных веществ. В принципе человеку для жизни нужно не так уж много: кислород (воздух), вода, пища, Элементарная одежда, жильё. Однако человек, осваивая окружающий мир, получая всё новые знания о нём, постоянно изменяет свою жизнь.

Во второй половине XIX века химическая наука достигла такого уровня развития, который сделал возможным создание новых, никогда ранее в природе не сосуществовавших веществ. Однако, создавая новые вещества, которые должны служить во благо, учёные создавали и такие вещества, которые становились угрозой для человечества.

С одной стороны вещества «стоят» на защите стран. Без многих химических веществ мы уже не представляем своей жизни, ибо они созданы на благо цивилизации (пластмассы, каучук, и т.д.). С другой стороны - часть веществ можно использовать для уничтожения, они «несут смерть».

1. Органические вещества в военном деле

В 1920 - 1930 гг. возникла угроза развязывания второй мировой войны. Крупнейшие мировые державы лихорадочно вооружались, наибольшие усилия для этого прилагали Германия и СССР. Немецкими учёными были созданы отравляющие вещества нового поколения. Однако Гитлер не решился развязать химическую войну, вероятно понимая, что последствия её для сравнительно маленькой Германии и необъятной России будут несоизмеримы.

После Второй мировой войны гонка химических вооружений продолжалась на более высоком уровне. В настоящее время развитые страны не производят химическое оружие, однако на планете скопились огромные запасы смертоносных отравляющих веществ, что представляет серьёзную опасность для природы и общества

На вооружение были приняты и хранятся на складах иприт, люизит, зарин, зоман, V-газы, синильная кислота, фосген, и ещё один продукт, который принято изображать шрифтом «VX». Рассмотрим их подробнее.

а) Зарин представляет собой бесцветную или желтого цвета жидкость почти без запаха, что затрудняет обнаружение его по внешним признакам. Он относится к классу нервно-паралитических отравляющих веществ. Зарин предназначается, прежде всего, для заражения воздуха парами и туманом, то есть в качестве нестойкого ОВ. В ряде случаев он, однако, может применяться в капельно-жидком виде для заражения местности и находящейся на ней боевой техники; в этом случае стойкость зарина может составлять: летом - несколько часов, зимой - несколько суток.

Зарин вызывает поражение через органы дыхания, кожу, желудочно-кишечный тракт; через кожу воздействует в капельно-жидком и парообразном состояниях, не вызывая при этом местного ее поражения. Степень поражения зарином зависит от его концентрации в воздухе и времени пребывания в зараженной атмосфере.

При воздействии зарина у пораженного наблюдаются слюнотечение, обильное потоотделение, рвота, головокружение, потеря сознания, приступы сильных судорог, паралич и, как следствие сильного отравления, смерть.

б) Зоман - бесцветная и почти без запаха жидкость. Относится к классу нервно-паралитических ОВ. По многим свойствам очень похож на зарин. Стойкость зомана несколько выше, чем у зарина; на организм человека он действует примерно в 10 раз сильнее.

в) V-газы представляют собой малолетучие жидкости с очень высокой температурой кипения, поэтому стойкость их во много раз больше, чем стойкость зарина. Так же как зарин и зоман, относятся к нервно-паралитическим отравляющим веществам. По данным иностранной печати, V-газы в 100-1000 раз токсичнее других ОВ нервно-паралитического действия. Они отличаются высокой эффективностью при действии через кожные покровы, особенно в капельно-жидком состоянии: попадание на кожу человека мелких капель V-газов, как правило, вызывает смерть человека.

г) Иприт - темно-бурая маслянистая жидкость с характерным запахом, напоминающим запах чеснока или горчицы. Относится к классу кожно-нарывных ОВ. Иприт медленно испаряется с зараженных участков; стойкость его на местности составляет: летом - от 7 до 14 дней, зимой - месяц и более. Иприт обладает многосторонним действием на организм: в капельно-жидком и парообразном состояниях он поражает кожу и глаза, в парообразном - дыхательные пути и легкие, при попадании с пищей и водой внутрь поражает органы пищеварения. Действие иприта проявляется не сразу, а спустя некоторое время, называемое периодом скрытого действия. При попадании на кожу капли иприта быстро впитываются в нее, не вызывая болевых ощущений. Через 4-8 часов на коже появляется краснота и чувствуется зуд. К концу первых и началу вторых суток образуются мелкие пузырьки, но затем они сливаются в одиночные большие пузыри, заполненные янтарно-желтой жидкостью, которая со временем становится мутной. Возникновение пузырей сопровождается недомоганием и повышением температуры. Через 2-3 дня пузыри прорываются и обнажают под собой язвы, не заживающие в течение длительного времени. Если в язву попадает инфекция, то возникает нагноение и сроки заживания увеличиваются до 5-6 месяцев. Органы зрения поражаются парообразным ипритом даже в ничтожно малых концентрациях его в воздухе и времени воздействия 10 минут. Период скрытого действия при этом длится от 2 до 6 часов; затем появляются признаки поражения: ощущение песка в глазах, светобоязнь, слезотечение. Заболевание может продолжаться 10-15 дней, после чего наступает выздоровление. Поражение органов пищеварения вызывается при приеме пищи и воды, зараженных ипритом. В тяжелых случаях отравления после периода скрытого действия (30-60 минут) появляются признаки поражения: боль под ложечкой, тошнота, рвота; затем наступают общая слабость, головная боль, ослабление рефлексов; выделения изо рта и носа приобретают зловонный запах. В дальнейшем процесс прогрессирует: наблюдаются параличи, появляется резкая слабость и истощение. При неблагоприятном течении смерть наступает на 3-12 сутки в результате полного упадка сил и истощения.

При тяжёлых поражениях спасти человека обычно не удаётся, а при поражении кожи пострадавший надолго теряет трудоспособность.

д) Синильная кислота - бесцветная жидкость со своеобразным запахом, напоминающим запах горького миндаля; в малых концентрациях запах трудно различимый. Синильная кислота легко испаряется и действует только в парообразном состоянии. Относится к ОВ общеядовитого действия. Характерными признаками поражения синильной кислотой являются: металлический привкус во рту, раздражение горла, головокружение, слабость, тошнота. Затем появляется мучительная одышка, замедляется пульс, отравленный теряет сознание, наступают резкие судороги. Судороги наблюдаются сравнительно недолго; на смену им приходит полное расслабление мышц с потерей чувствительности, падением температуры, угнетением дыхания с последующей его остановкой. Сердечная деятельность после остановки дыхания продолжается еще в течение 3-7 минут.

е) Фосген - бесцветная, легколетучая жидкость с запахом прелого сена или гнилых яблок. На организм действует в парообразном состоянии. Относится к классу ОВ удушающего действия.

Фосген имеет период скрытого действия 4-6 часов; продолжительность его зависит от концентрации фосгена в воздухе, времени пребывания в зараженной атмосфере, состояния человека, охлаждения организма. При вдыхании фосгена человек ощущает сладковатый неприятный вкус во рту, затем появляются покашливание, головокружение и общая слабость. По выходу из зараженного воздуха признаки отравления быстро проходят, наступает период так называемого мнимого благополучия. Но через 4-6 часов у пораженного наступает резкое ухудшение состояния: быстро развиваются синюшное окрашивание губ, щек, носа; появляются общая слабость, головная боль, учащенное дыхание, сильно выраженная одышка, мучительный кашель с отделением жидкой, пенистой, розоватого цвета мокроты, что указывает на развитие отека легких. Процесс отравления фосгеном достигает кульминационной фазы в течение 2-3 суток. При благоприятном течении болезни у пораженного постепенно начнет улучшаться состояние здоровья, а в тяжелых случаях поражения наступает смерть.

ж) Диметиламид лизергиновой кислоты является отравляющим веществом психохимического действия. При попадании в организм человека через 3 минуты появляется лёгкая тошнота и расширение зрачков, а затем - галлюцинации слуха и зрения, продолжающиеся в течение нескольких часов.

2. Неорганические вещества в военном деле

Немцы впервые применили химическое оружие 22апреля 1915г. вблизи г. Ипр: начали газовую атаку против французских и английских войск. Из 6 тысяч металлических баллонов было выпущено 180т хлора по ширине фронта в 6 км. Затем они применили хлор в качестве ОВ и против русской армии. В результате только первой газобаллонной атаки было поражено около 15 тысяч солдат, из них 5 тысяч погибли от удушенья. Для защиты от отравления хлором стали применять пропитанные раствором поташа и питьевой соды повязки, а затем противогаз, в котором для поглощения хлора использовали тиосульфат натрия.

Позднее появились более сильные отравляющие вещества, содержащие хлор: иприт, хлорпикрин, хлорциан, удушающий газ фосген и др.

Хлорную известь (CaOCI 2) используют в военных целях как окислитель при дегазации, разрушающий боевые отравляющие вещества, и в мирных целях - для отбеливания хлопчатобумажных тканей, бумаги, для хлорирования воды, дезинфекции. Применение этой соли основано на том, что при взаимодействии её с оксидом углерода (IV) выделяется свободная хлорноватистая кислота, которая разлагается:

2CaOCI 2 + CO 2 + H 2 O = CaCO 3 + CaCI 2 + 2HOCI;

2HOCI =2HCI + O 2 .

Кислород в момент выделения энергично окисляет и разрушает отравляющие и другие вещества, оказывает отбеливающие и дезинфицирующие действие.

Хлорид аммония NH 4 CI применяют для наполнения дымовых шашек: при возгорании зажигательной смеси хлорид аммония разлагается, образуя густой дым:

NH 4 CI = NH 3 + HCI.

Такие шашки широко использовали в годы Великой Отечественной войны.

Нитрат аммония служит для производства взрывчатых веществ - аммонитов, в состав которых входят ещё и другие взрывчатые нитросоединения, а также горючие добавки. Например, в состав аммонала входит тринитротолуол и порошкообразный алюминий. Основная реакция, которая протекает при его взрыве:

3NH 4 NO 3 + 2AI = 3N 2 + 6H 2 O + AI 2 O 3 + Q.

Высокая теплота сгорания алюминия повышает энергию взрыва. Нитрат алюминия в смеси с тринитротолуолом (толом) даёт взрывчатое вещество аммотол. Большинство взрывчатых смесей содержат в своём составе окислитель (нитраты металлов или аммония и др.) и горючие вещества (дизельное топливо, алюминий, древесную муку и др.).

Фосфор (белый) широко применяют в военном деле в качестве зажигательного вещества, используемого для снаряжения авиационных бомб, мин, снарядов. Фосфор легко воспламеняется и при горении выделяет большое количество теплоты (температура горения белого фосфора достигает 1000 - 1200°С). При горении фосфор плавится, растекается и при попадании на кожу вызывает долго не заживающие ожоги, язвы.

При сгорании фосфора на воздухе получается фосфорный ангидрид, пары которого притягивают влагу из воздуха и образуют пелену белого тумана, состоящего из мельчайших капелек раствора метафосфорной кислоты. На этом основано его применение в качестве дымообразующего вещества.

На основе орто - и метафосфорной кислот созданы самые токсичные фосфорорганические отравляющие вещества (зарин, зоман, V - газы) нервно-паралитического действия. Защитой от их вредного воздействия служит противогаз.

Графит благодаря его мягкости широко используют для получения смазочных материалов, применяющихся в условиях высоких и низких температур. Чрезвычайная жаростойкость и химическая инертность графита позволяют использовать его в атомных реакторах на атомных подводных лодках в виде втулок, колец, как замедлитель тепловых нейтронов, конструкционный материал в ракетной технике.

Активированный уголь - хороший адсорбент газов, поэтому его применяют как поглотитель отравляющих веществ в фильтрующих противогазах. В годы Первой мировой войны были большие человеческие потери, одной из главных причин было отсутствие надёжных индивидуальных средств защиты от отравляющих веществ. Н.Д. Зелинский предложил простейший противогаз в виде повязки с углём. В дальнейшем он вместе с инженером Э.Л. Кумантом усовершенствовал простые противогазы. Они предложили изоляционно-резиновые противогазы, благодаря которым были спасены жизни миллионов солдат.

Оксид углерода (II) (угарный газ) входит в группу общеядовитого химического оружия: он соединяется с гемоглобином крови, образуя карбоксигемоглобин. В результате этого гемоглобин утрачивает способность связывать и переносить кислород, наступает кислородное голодание и человек погибает от удушья.

В боевой обстановке при нахождении в зоне горения огнеметно-зажигательных средств, в палатках и других помещениях с печным отоплением, при стрельбе в закрытых помещениях может произойти отравление угарным газом. А так как оксид углерода (II) имеет высокие диффузионные свойства, то обычные фильтрующие противогазы не способны очистить заражённый этим газом воздух. Учёные создали кислородный противогаз, в специальных патронах которого помещены смешанные окислители: 50 % оксида марганца (IV), 30 % оксида меди (II), 15 % оксида хрома (VI) и 5 % оксида серебра. Находящийся в воздухе оксид углерода (II) окисляется в присутствии этих веществ, например:

CO + MnO 2 = MnO + CO 2 .

Человеку, поражённому угарным газом, необходимы свежий воздух, сердечные средства, сладкий чай, в тяжёлых случаях - вдыхание кислорода, искусственное дыхание.

Оксид углерода (IV)(углекислый газ) в 1,5 раза тяжелее воздуха, не поддерживает процессы горения, применяется для тушения пожаров. Углекислотный огнетушитель заполнен раствором гидрокарбоната натрия, а в стеклянной ампуле находится серная или соляная кислота. При введении огнетушителя в рабочее состояние начинает протекать реакция:

2NaHCO 3 + H 2 SO 4 = Na 2 SO 4 + 2H 2 O + 2CO 2 .

Выделяющийся углекислый газ обволакивает плотным слоем очаг пожара, прекращая доступ кислорода воздуха к горящему объекту. В годы Великой Отечественной войны такие огнетушители использовали при защите жилых зданий городов и промышленных объектов.

Оксид углерода (IV) в жидком виде - хорошее средство, используемое в пожаротушении реактивных двигателей, устанавливаемых на современных военных самолётах.

Благодаря прочности, твёрдости, жаростойкости, электропроводности, способности подвергаться механической обработке металлы находят широчайшее применение в военном деле: в самолёто- и ракетостроении, при изготовлении стрелкового оружия и бронированной техники, подводных лодок и военно-морских кораблей, снарядов, бомб, радиоаппаратуры и т.д.

Термит (смесь Fe 3 O 4 с порошком AI) применяют для изготовления зажигательных бомб и снарядов. При поджигании этой смеси происходит бурная реакция с выделением большого количества теплоты:

8AI + 3Fe 3 O 4 = 4AI 2 O 3 + 9Fe + Q.

Температура в зоне реакции достигает 3000°С. При такой высокой температуре плавится броня танков. Термитные снаряды и бомбы обладают большой разрушительной силой.

Пероксид натрия Na 2 O 2 применяют как регенератор кислорода на военных подводных лодках. Твёрдый пероксид натрия, заполняющий систему регенерации, взаимодействует с углекислым газом:

2Na 2 O 2 + 2CO 2 = 2Na 2 CO 3 + O 2 .

химический органический отравляющий оружие

Эта реакция лежит в основе современных изолирующих противогазов (ИП), которые используют в условиях недостатка кислорода в воздухе, при применении боевых отравляющих веществ. Изолирующие противогазы находятся на вооружении экипажей современных военно-морских кораблей и подводных лодок, именно эти противогазы обеспечивают выход экипажа из затопленного танкера.

Молибден придает стали высокую твёрдость, прочность и вязкость. Известен следующий факт: броня английских танков, участвующих в сражениях Первой мировой войны, была изготовлена из хрупкой марганцевой стали. Снаряды немецкой артиллерии свободно пробивали массивный панцирь из такой стали толщиной 7,5 см. Но стоило прибавить к стали лишь 1,5-2% молибдена, как танки стали неуязвимыми при толщине броневого листа 2,5 см. Молибденовая сталь идёт на изготовление брони танков, корпусов кораблей, стволов орудий, ружей, деталей самолётов.

Заключение

Химическое оружие, конечно, нужно уничтожать и кок можно быстрее, это смертельное оружие против человечества. Ещё люди помнят, как фашисты в концлагерях умертвили сотни тысяч человек в газовых камерах, как американские войска испытывали химическое оружие во время войны во Вьетнаме.

Применение химического оружия в наши дни запрещено международным соглашением. В первой половине XX в. отравляющие вещества либо топили в море, либо закапывали в землю. Чем это чревато - пояснять не надо. Сейчас отравляющие вещества сжигают, но и этот способ имеет свои недостатки. При горении в обычном пламени их концентрация в отходящих газах в десятки тысяч раз превышает предельно допустимую. Относительную безопасность даёт высокотемпературный дожиг отходящих газов в плазменной электропечи (метод, применяемый в США).

Другой подход к уничтожению химического оружия заключается в предварительном обезвреживании отравляющих веществ. Образовавшиеся нетоксичные массы можно сжечь или переработать в твёрдые нерастворимые блоки, которые затем захоронить в специальных могильниках или использовать в дорожном строительстве.

В настоящее время широко обсуждается концепция уничтожения отравляющих веществ непосредственно в боеприпасах, предлагается переработка нетоксичных реакционных масс в химическую продукцию коммерческого назначения. Но уничтожение химического оружия и научные исследования в этой области требуют больших капиталовложений.

Хотелось бы надеяться, что проблемы будут решены и мощь химической науки будет направлена не на разработку новых отравляющих веществ, а на решение глобальных проблем человечества.

Размещено на Allbest.ru

Подобные документы

    Цель и направления токсикологии. Изучение ядов и их действия на организм человека ведущими фармакологами. Задачи военной токсикологии. Использование отравляющих веществ с целью поражения живой силы противника. Краткая характеристика химического оружия.

    лекция , добавлен 19.03.2010

    Зоны химического заражения и очаги поражения от отравляющих веществ и опасных химических веществ. Вид очага химического поражения при выбросе сильнодействующих ядовитых веществ. Основные степени химической опасности. Оценка ядерного и химического оружия.

    контрольная работа , добавлен 06.03.2010

    Изучение оружия массового поражения, действие которого основано на токсических свойствах отравляющих химических веществ. Описания его действия на людей и боевую технику. Анализ средств индивидуальной, медицинской защиты населения от химического оружия.

    презентация , добавлен 11.05.2011

    Отравляющими веществами называются ядовитые соединения, применяемые для снаряжения химических боеприпасов. Они являются главными компонентами химического оружия. Классификация отравляющих веществ. Оказание первой медицинской помощи при отравлениях.

    реферат , добавлен 15.02.2010

    Принципы применения химического оружия, его виды и поражающее воздействие. Медико-тактическая классификация очагов поражения отравляющими и аварийными химически опасными веществами, их краткая характеристика. Организация медицинской помощи пораженным.

    реферат , добавлен 19.03.2010

    Основные типы отравляющих веществ: нервно-паралитические, кожно-нарывные, общеядовитые, удушающие, психохимические и раздражающие. Уничтожение химического оружия в Российской Федерации. Террористические атаки и войны с применением химического оружия.

    презентация , добавлен 19.02.2014

    Ядовитые, отравляющие и психотропные вещества. Средства применения боевых токсических химических веществ и бактериологического оружия. Виды БТХВ по действию на организм человека. Источники Сибирской язвы. Технологии уничтожения химического оружия.

    реферат , добавлен 04.10.2013

    Характеристика способов поражения организма человека при применении ядерного, химического или бактериологического оружия массового поражения. Правила использования средств индивидуальной защиты кожи и органов дыхания. Обнаружение и измерение излучений.

    реферат , добавлен 12.02.2011

    История возникновения и применения химического оружия. Факторы распространения опасных химических веществ в окружающей природной среде в концентрациях или количествах, создающих угрозу для людей. Специфичность препаратов в отношении действующих ядов.

    контрольная работа , добавлен 17.06.2016

    История применения боевых отравляющих веществ. Первые опыты. Фриц Хабер. Первое применение БОВ. Воздействие на человека кожно-нарывного ОВ. Химическое оружие в России. Химическое оружие в локальных конфликтах второй половины ХХ века.

1.5. ВОЕННАЯ ХИМИЯ СТРАНЫ СОВЕТОВ И КУХАРОК

«Кухарки» в военно-химическом деле воцарились с некоторой задержкой.

Как известно, в 1918 г. командные кадры Красной Армии на 75% состояли из военспецов, и лишь к 1921 г. число бывших царских офицеров сократилось до 34%. В военно-химическом деле, как и по всей стране, переход к правлению «кухарок» от российской интеллигенции тоже состоялся, однако процесс несколько затянулся, хотя в целом использование научно-технической интеллигенции развивалось по тому же сценарию, что и в иных сферах жизни.

С формальным окончанием Гражданской войны («борьба с бандитизмом» еще продолжалась; голод - тоже: на IX Всероссийском съезде Советов 24 декабря 1921 г. М.И. Калинин (1875–1946) говорил, что голодающими «официально признаны у нас в настоящий момент 22 миллиона человек») в Красной Армии началась работа по организации военно-химической инфраструктуры. В ее рамках в январе 1921 г. Артком обратился к руководству армии с идеей создания опытного химического завода ОВ, который должен был включать снаряжательную мастерскую, опытное производство ОВ, химическую лабораторию, а также противогазовый отдел. В июне 1921 г. Артком возбудил ходатайство об объявлении конкурса на проект батареи газовых минометов (газометов).

Активизировались и опытные работы по проблеме химоружия. Это для всего мира важно, что в 1922 г. англичанин Х. Картер обнаружил в Египте гробницу фараона Тутанхамона. А в советской России в июне 1922 г., вскоре после XI съезда РКП(б), Артком Красной Армии обсуждал «программу опытов, подлежащих к постановке текущим летом на Артиллерийском газовом полигоне» (среди них: изучение газового минометного облака, испытание группового выпуска газов, изучение действия химических снарядов, в том числе осколочного действия и т.д.).

В рамках этого процесса 24 сентября 1921 г. заместитель председателя РВСР Э.М. Склянский утвердил новое положение о полигоне АГП, который уже три года действовал в районе деревни Кузьминки, совсем недалеко от Москвы. Полигон предназначался для опытов «с целью исследования и изучения удушливых и ядовитых средств, применяемых для боевых целей». Тем же положением была предусмотрена и иная функция полигона (в современной терминологии, абсолютно антиэкологическая), приведшая в будущем к немалым экологическим бедам - проведение на «полигоне по соглашению соответствующих наркоматов с артиллерийским комитетом… утилизации» ОВ. Другими словами, так было впервые узаконено закапывание химоружия на АГП в Кузьминках. Другим способом химоружие вплоть до 1938 г. практически не ликвидировалось.

К 1922 г. Красная Армия созрела для реформирования руководства всем военно-химическим делом. Инициатором стал начальник артиллерии РККА Ю.М. Шейдеман. В феврале IX отдел Арткома получил задание от председателя Арткома «разработать… мероприятия по постановке в республике газового дела». И в документе от 22 марта 1922 г. сообщались многочисленные соображения на сей счет. В число предлагавшихся мероприятий входили реальное создание химической снаряжательной мастерской на складе в Очакове, начало реальных испытаний образцов химоружия на химполигоне в Кузьминках, создание батареи газовых минометов, организация заводов по выпуску ОВ и даже мобилизация Разведупра штаба РККА на информационную поддержку газового дела «путем добывания нужных сведений из-за границы агентурным путем».

А 8 апреля 1922 г. уже сам Ю.М. Шейдеман направил С.С. Каменеву (1981–1936) - Главнокомандующему вооруженными силами Республики - принципиальный документ «О необходимости принятия мер по постановке военно-химического дела в Красной Армии». Исходный посыл был очевиден - «с достаточной достоверностью можно предвидеть в будущем боевое применение химических средств еще в большем масштабе», чем в Первую мировую войну. Поэтому, «считаясь с тем, что боевые столкновения с противником возможны и что существует большая вероятность ожидания боевого применения химических средств борьбы при первых же столкновениях с противником», Ю.М. Шейдеман внес руководству армии ряд предложений. Среди них были, в частности, и такие: «ускорить оборудование разливочной станции при складе УС» в Очакове близ Москвы, а также «ускорить оборудование артиллерийского газового полигона» в Кузьминках близ Москвы. Кроме того, было предложено организовать «на химических заводах изготовление новых боевых химических веществ германского «желтого креста» и «синего креста» (имеются в виду иприт и дифенилхлорарсин - Л.Ф.) для возможности производства необходимых опытов по снаряжению и боевому применению этих веществ». А чтобы последняя идея стала фактом жизни, было предложено осуществить принципиальное организационное решение: «В целях дальнейших изысканий и исследований в области боевого применения химических средств и научной разработки этих вопросов учредить при Артиллерийском комитете специальную комиссию из наиболее видных ученых и специалистов».

Тот демарш дал толчок реформированию и расширению подготовки Красной Армии к наступательной химической войне. 15 июня 1922 г. Ю.М. Шейдеман созвал узкое совещание соратников «по вопросу организации и постановке газового дела в РСФСР», на котором обсудил содержание подготовленного им доклада для высших властей страны. Была создана Особая комиссия по вопросам химических средств борьбы под председательством начальника Штаба РККА П.П. Лебедева (1872–1933), в рамках которой прорабатывались предложения. И уже 19 июня в письме на имя заместителя председателя РВСР Э.М. Склянского начальник штаба испросил «согласие на осуществление намеченных совещанием мероприятий» и получил резолюцию «Согласен. Э.М. Склянский, 23.6.22». Кстати, уже 1 июля 1922 г. вакантную должность Захимреспа занял В.Н. Баташев.

Одно из важных решений тех месяцев - сосредоточение в армии обеих ветвей подготовки к химической войне: к армейской IX секции Арткома РККА вернулась гражданская Комиссия по газовому и противогазовому делу (после разбиения в 1918 г. единой системы военно-химического дела на две части - военную и гражданскую - эта комиссия работала при НТО ВСНХ). Так вот, в 1922 г. при Артуправлении РККА был создан военно-химический орган, который был назван «Постоянным совещанием по вопросам химических средств для борьбы» и который заменил более слабую и, по существу, оторванную от армии Комиссию по газовому и противогазовому делу. Первое заседание «Постоянного совещания…» состоялось 23 ноября. Его председателем вновь согласился стать человек, который был мотором военно-химического дела еще до октября 1917 г. - член Президиума ВСНХ СССР, великий ученый, химик-органик, академик В.Н. Ипатьев. Заместителем стал проф. А.А. Дзержкович (начальник IX секции Арткома ГАУ). Оба руководителя продолжили дело, которым занимались до октябрьского переворота. В.Н. Ипатьев руководил военной химией до тех пор, пока дело не было поставлено на ноги, после чего академика заменили на малоизвестного левого эсера с химическим дипломом. А вот эсер по традиции довольно скоро «разобрался» с проф. А.А. Дзержковичем.

На другой день начальник Штаба РККА представил в РВС на утверждение «Положение…» об уже работающем органе. В нем были записаны очевидные задачи: изучение и испытание открытий и изобретений, сделанных в области отравляющих веществ (ОВ; именно тогда была введена новая аббревиатура ОВ вместо прежней УС), изыскание новых ОВ, изучение их свойств и возможности применения, разработка методов применения ОВ, усовершенствование способов изготовления ОВ и т.д. А чтобы обеспечить практическую направленность вновь созданного армейского органа химической войны, ему были переданы, среди прочего, АГП, снаряжательная мастерская ОВ и лаборатория ВВХШ. Было ему предоставлено также и право распоряжения необходимыми ассигнованиями.

Между тем и в самих войсках, еще не знакомых с новыми решениями по военно-химическому делу, рождались все новые и новые предложения. Так, на инициативном письме от 16 декабря 1922 г. своего начальника артиллерии («в будущих войнах химическим средствам будет отведено если не первое, то одно из важнейших мест..; встает вопрос, что мы будем делать в случае войны и активного применения газов противником.., не подготовившись к этому делу в мирное время») командующий войсками Западного фронта М.Н. Тухачевский, недавно закончивший химическую войну против тамбовских повстанцев, написал весьма активную резолюцию («Этому делу надо придать крупный общественный характер. Надо связаться с гражданским ученым миром. Надо дать большие средства. Надо поставить во главе высоко авторитетное для РККА лицо.») и в этом виде отправил Главнокомандующему Красной Армией С.С. Каменеву.

Не отстал от М.Н. Тухачевского и командующий вооруженными силами на Украине и в Крыму М.В. Фрунзе, который не успел применить химоружие в конце Гражданской войны. В докладе на имя Л.Д. Троцкого, датированном 9 ноября 1922 г., он написал: «нужно или окончательно признать военно-химическое дело в Красной Армии и уделить ему должное внимание, или вовсе от него отрешиться… В настоящее время приходится констатировать почти полное отсутствие планомерной работы в рядах Красной Армии в этом направлении и зависимость постановки военно-химического дела от того или иного отношения к нему начальников артиллерии округов и от знания, энергии и любви к своему делу заведующих средствами химической борьбы».

«Инициатива масс» закончилась тем, что начальник артиллерии РККА Ю.М. Шейдеман 31 декабря 1922 г. вместо поздравления военно-химической службы с Новым годом известил ее («в связи с поступающими от округов и фронтов вопросами о состоянии военно-химического дела и достижениях в этой области») о реальном положении дел на тот момент, в том числе о начале работы Постоянного совещания В.Н. Ипатьева и о создании «Инструкции по применению химических снарядов».

Ряд практических вопросов строительства военно-химических объектов был обсужден на заседании, состоявшемся 27 января 1923 г.. При артиллерийском ведомстве была образована химическая строительная комиссия для возведения объектов военно-химической инфраструктуры: опытного завода ОВ, разливочной станции, снаряжательной мастерской, хранилищ химоружия.

Разумеется, в силу логики событий военно-химическое дело не могло оставаться в слишком узких рамках артиллерии. Не прошло и полугода после начала работы «Постоянного совещания по вопросам химических средств для борьбы», как после соответствующего решения РВС в название этого органа вплелось слово «межведомственное», чем была узаконена тенденция на отделение совещания, а также всей военно-химической проблематики от артиллеристов с постепенным приданием им всеармейского статуса и содержания. С 14 апреля 1923 г., за несколько дней до открытия XII съезда РКП(б), этот орган военно-химического руководства стал называться «Межведомственным совещанием по химическим средствам борьбы» (Межсовхим). В круг вопросов Межсовхима был включен весь спектр очевидных задач - и наступательных, и оборонительных. Ему было предписано заниматься всем - от изыскания новых ОВ до изыскания и разработки мер и средств защиты от химоружия.

Первым же решением Межсовхима стало образование комиссии по выбору места для Опытного завода ОВ (будущего Экспериментального завода Анилтреста, Москва), подготовке проекта по его устройству и составлению сметы. Председателю комиссии Б.Ф. Курагину было выдано 2 млн. руб. для выполнения работ в течение двух месяцев. Второе решение носило столь же принципиальный характер: технической строительной комиссии был выделен 1 млн. руб. для подготовки проекта разливочной станции ОВ, предусматривавшейся к размещению на артиллерийском химическом складе в Очакове недалеко от Москвы (будущем химическом складе № 136). Тогда же был сформулирован перечень основных ОВ, рекомендованных для снаряжения в артхимснаряды. В него были включены иприт, люизит, мышьяксодержащие слезоточивые ОВ, хлорацетофенон, бромбензилцианид. Были также обсуждены предложения о привлечении ВВХШ и лаборатории Арткома к работам по созданию новых ОВ.

Не забывали создатели военно-химической службы и своей прямой цели: наступательной химической войны. Во всяком случае уже летом 1923 г. ее глава В.Н. Баташев поделился со своими подчиненными соображениями о нормах расхода средств химического нападения тех лет.

ИЗ СТАРОГО ДОКУМЕНТА:

«Заведующим средствами
химической борьбы

Сообщаю, что включение в ежемесячную заявку потребности средств химической борьбы в баллонах признано необходимым. Причем при расче те количества необходимых баллонов типа Е-70 полагаю правильным ис ходить из следующих соображений:

1. Баллонами указанного типа, снаряженными хлором и фосгеном (в смеси), снабжаются для выполнения боевых операций (газовая атака) спе циальные химические войска типа отдельных химических рот.
2. Боевой фронтовой запас этих баллонов для одной операции роты в условиях затяжной маневренной войны или позиционной составляет… 5000 баллонов или 10000 пудов снаряжаемого газа.
Учитывая возможность выполнения 3–4-х газовых атак в год одной ро той, для означенных целей необходимо на год иметь запас на одну химиче скую роту - 20000 баллонов или 40000 пудов газа…
Что же касается норм в потребности количества газов и мин для целей химического минометания и газометания, то ввиду возможного примене ния химических мин не только специальными химическими частями, но и минометными дивизионами, установить последние в настоящее время не представляется возможным.

Заведующий средствами химической борьбы РККА
В.Н. Баташев, 16 июля 1923 г.»

Мощный толчок развитию военно-химического дела придал председатель РВС СССР Л.Д. Троцкий. 20–21 ноября 1923 г. он дал главнокомандующему С.С. Каменеву задание «наметить план длительной систематической кампании» в отношении химической войны, в том числе созвать совещание для определения позиции по этой проблеме. И 28 ноября 1923 г. - через полтора года после инициативы Ю.М. Шейдемана от 8 апреля 1922 г. - Л.Д. Троцкий собрал широкое совещание по вопросам химической войны. В нем, помимо высших чинов армии (Э.М. Склянского, С.С. Каменева, И.С. Уншлихта, П.П. Лебедева, И.Т. Смилги, В.А. Антонова-Овсеенко, А.П. Розенгольца), участвовали также представители науки и промышленности (В.Н. Ипатьев, П.А. Богданов, Е.И. Шпитальский, Д.С. Гальперин, П.А. Шатерников, Н.А. Сошественский) и военно-химического дела (Ю.М. Шейдеман, А.А. Дзержкович, В.Н. Баташев, М.Г. Годжелло).

«Вся область химической войны должна составить предмет настоящего совещания ,»- сказал во вступительном слове Л.Д. Троцкий, прежде чем предоставить слово для основного доклада академику В.Н. Ипатьеву.

СТРАНИЦЫ ИСТОРИИ:

«Военный комиссар Л.Д. Троцкий, возглавлявший в то время Реввоенсо вет, пожелал узнать, в каком положении находится дело снабжения ар мии противогазами и ядовитыми веществами. С этой целью он устроил особое заседание Реввоенсовета, где мне было поручено сделать доклад об этом вопросе… На собрании присутствовало около 40–50 человек…
Это заседание Реввоенсовета имело большое значение для дальнейшего развития газового и противогазового дела, и оно двинулось бы гораздо бы стрее в своем развитии, если бы Троцкий оставался на посту председате ля РВС».

В.Н. Ипатьев (Нью-Йорк, 1945 г.)

В.Н. Ипатьев рассмотрел по существу три вопроса. Во-первых, дал общую картину в связи с применением химоружия в Первую мировую войну, и в связи с новой информацией, полученной им во время только что состоявшейся поездки в Германию. Во-вторых, определил приоритеты в видах ОВ, которыми необходимо заниматься: в первую очередь - это иприт («наиболее интересное вещество»; «это вещество должно лечь во главу нашего будущего производства удушающих средств») и дифосген , основные трудности в изготовлении которых в полузаводском масштабе были к тому времени преодолены; во вторую очередь - это мышьяксодержащие дифенилхлорарсин, люизит и дик (этилдихлорарсин). Было при этом указано, что все должно начинаться с создания мощностей по выпуску хлора и фосгена, без которых невозможен выпуск остального. В-третьих, сформулировал многочисленные научно-практические задачи подготовки к химической войне: постановка в Петрограде и Москве активных лабораторных исследований по разработке технологий производства ОВ, решение проблемы сырья для этих производств, создание самих производственных мощностей для выпуска ОВ, разработка способов снаряжения снарядов и создание мастерской для разливки ОВ, исследование путей стабилизации ОВ, изучение способов распыления ОВ, проведение интенсивных токсикологических испытаний и т.д.

Общее заключение В.Н. Ипатьева было оптимистичным: «Сопоставляя работу на Западе с тем, что делается у нас, мы приходим к выводу: мы работаем совершенно правильным путем». Характерно, что помимо этого, В.Н. Ипатьев упомянул о единственной дружественной части Запада: «нельзя не приветствовать, конечно, если это осуществимо, образование русско-немецкого общества для научных химических исследований». То был иносказательный намек на то, что наряду с практической военно-химической работой шла другая - международно-дипломатическая - жизнь, о содержании которой мало знали даже члены высшей военно-государственной бюрократии. Тем более к этому знанию были допущены далеко не все участники совещания, проведенного Л.Д. Троцким. Дело в том, что задолго до этого совещания, а именно 11 августа 1922 г., было подписано секретное соглашение о сотрудничестве между армиями Германии и России. В соответствии с ним рейхсвер получил возможность создавать на территории РСФСР военные объекты для проведения испытаний военной техники, а также обучения личного состава войск Германии по тем направлениям, которые были запрещены Версальским договором, - танки, авиация, химия. За услуги РСФСР была предусмотрена и ежегодная денежная оплата, и право прямого участия в немецких военных разработках и испытаниях. Именно в рамках этих договоренностей в 1923 г. был предпринят первый практический шаг к советско-германскому сотрудничеству в военно-химической области. Было решено организовать на территории РСФСР общими силами производство двух основных ОВ тех лет - иприта и фосгена. Будущий завод химоружия предназначался для обеспечения военных нужд Германии

В целом Л.Д. Троцкий был удовлетворен состоянием военно-химических дел. И в дальнейшем РВС СССР, который он тогда возглавлял, занимался этими делами самым активным образом. Настолько активно, что на заседании РВС, состоявшемся в очень узком составе в мае 1924 г., было решено ассигновать крупную по тем временам сумму для заказа за рубежом нужных армии вещей, «в первую голову на артиллерию и военно-химические нужды».

Остается добавить, что в то время страны мира были заняты работой, явно чуждой участникам того совещания у председателя РВС СССР. Во всяком случае довольно скоро, 17 июня 1925 г., 38 стран подписали в Женеве «Протокол о запрещении применения на войне удушливых, ядовитых или других подобных газов и бактериологических средств». Этот акт вряд ли стал широко известен в Красной Армии, и уж во всяком случае он ничего не изменил в умонастроении руководителей Советского Союза, уже втянувших страну в активную подготовку к наступательной химической войне (пока - вместе с Германией).

Формально присоединившись к тому Протоколу, СССР сопроводил акт присоединения такими оговорками, которые его обесценивали. Они позволяли не только готовиться в последующие годы к наступательной химической войне, но и применять химоружие всегда и везде. Что, собственно, и делалось почти весь XX век. Окончательный отказ России и от оговорок, и от смертельного химоружия как оружия массового поражения произошел лишь в конце 2000 г..

Мы живём в мире различных веществ. В принципе человеку для жизни нужно не так уж много: воздух, вода, пища, элементарная одежда, жильё. Однако человек, осваивая окружающий мир, получая всё новые знания о нём, постоянно изменяет свою жизнь.
Во второй половине XIX века химическая наука достигла такого уровня развития, который сделал возможным создание новых, никогда ранее в природе не сосуществовавших веществ. Однако, создавая новые вещества, которые должны служить во благо, учёные создавали и такие вещества, которые становились угрозой для человечества.
В 1915 г. немцы использовали для победы на французском фронте газовые атаки ядовитыми веществами. Что оставалось делать остальным странам, чтобы сохранить жизнь и здоровье солдат?
В первую очередь – создать противогаз, что было выполнено успешно Н.Д. Зелинским. Он говорил: «Я изобрёл его не для нападения, а для защиты молодых жизней от страданий и смертей». Ну а потом, как цепная реакция, стали создаваться новые вещества – начало эпохи химического оружия.
Как относится к этому?
С одной стороны вещества «стоят» на защите стран. Без многих химических веществ мы уже не представляем своей жизни, ибо они созданы на благо цивилизации (пластмассы, каучук, и т.д.). С другой стороны – часть веществ можно использовать для уничтожения, они несут «смерть».
В 1920 – 1930 гг. возникла угроза развязывания второй мировой войны. Крупнейшие мировые державы лихорадочно вооружались, наибольшие усилия для этого прилагали Германия и СССР. Немецкими учёными были созданы отравляющие вещества нового поколения. Однако Гитлер не решился развязать химическую войну, вероятно понимая, что последствия её для сравнительно маленькой Германии и необъятной России будут несоизмеримы.
После Второй мировой войны гонка химических вооружений продолжалась на более высоком уровне. В настоящее развитые страны не производят химическое оружие, однако на планете скопились огромные запасы смертоносных отравляющих веществ, что представляет серьёзную опасность для природы и общества
На вооружение были приняты и хранятся на складах иприт, люизит, зарин, зоман, V-газы, синильная кислота, фосген, и ещё один продукт, который принято изображать шрифтом «VX». Рассмотрим их подробнее.

а) Зарин представляет собой бесцветную или желтого цвета жидкость почти без запаха, что затрудняет обнаружение его по внешним признакам. Он относится к классу нервно-паралитических отравляющих веществ. Зарин предназначается, прежде всего, для заражения воздуха парами и туманом, то есть в качестве нестойкого ОВ. В ряде случаев он, однако, может применяться в капельно-жидком виде для заражения местности и находящейся на ней боевой техники; в этом случае стойкость зарина может составлять: летом - несколько часов, зимой - несколько суток. Зарин вызывает поражение через органы дыхания, кожу, желудочно-кишечный тракт; через кожу воздействует в капельно-жидком и парообразном состояниях, не вызывая при этом местного ее поражения. Степень поражения зарином зависит от его концентрации в воздухе и времени пребывания в зараженной атмосфере. При воздействии зарина у пораженного наблюдаются слюнотечение, обильное потоотделение, рвота, головокружение, потеря сознания, приступы сильных судорог, паралич и, как следствие сильного отравления, смерть.
б) Зоман - бесцветная и почти без запаха жидкость. Относится к классу нервно-паралитических ОВ. По многим свойствам очень похож на зарин. Стойкость зомана несколько выше, чем у зарина; на организм человека он действует примерно в 10 раз сильнее.
в) V-газы представляют собой малолетучие жидкости с очень высокой температурой кипения, поэтому стойкость их во много раз больше, чем стойкость зарина. Так же как зарин и зоман, относятся к нервно-паралитическим отравляющим веществам. По данным иностранной печати, V-газы в 100 - 1000 раз токсичнее других ОВ нервно-паралитического действия. Они отличаются высокой эффективностью при действии через кожные покровы, особенно в капельно-жидком состоянии: попадание на кожу человека мелких капель V-газов, как правило, вызывает смерть человека.
г) Иприт - темно-бурая маслянистая жидкость с характерным запахом, напоминающим запах чеснока или горчицы. Относится к классу кожно-нарывных ОВ. Иприт медленно испаряется с зараженных участков; стойкость его на местности составляет: летом - от 7 до 14 дней, зимой - месяц и более. Иприт обладает многосторонним действием на организм: в капельно-жидком и парообразном состояниях он поражает кожу и глаза, в парообразном - дыхательные пути и легкие, при попадании с пищей и водой внутрь поражает органы пищеварения. Действие иприта проявляется не сразу, а спустя некоторое время, называемое периодом скрытого действия. При попадании на кожу капли иприта быстро впитываются в нее, не вызывая болевых ощущений. Через 4 - 8 часов на коже появляется краснота и чувствуется зуд. К концу первых и началу вторых суток образуются мелкие пузырьки, но затем они сливаются в одиночные большие пузыри, заполненные янтарно-желтой жидкостью, которая со временем становится мутной. Возникновение пузырей сопровождается недомоганием и повышением температуры. Через 2 - 3 дня пузыри прорываются и обнажают под собой язвы, не заживающие в течение длительного времени. Если в язву попадает инфекция, то возникает нагноение и сроки заживания увеличиваются до 5 - 6 месяцев. Органы зрения поражаются парообразным ипритом даже в ничтожно малых концентрациях его в воздухе и времени воздействия 10 минут. Период скрытого действия при этом длится от 2 до 6 часов; затем появляются признаки поражения: ощущение песка в глазах, светобоязнь, слезотечение. Заболевание может продолжаться 10 - 15 дней, после чего наступает выздоровление. Поражение органов пищеварения вызывается при приеме пищи и воды, зараженных ипритом. В тяжелых случаях отравления после периода скрытого действия (30 – 60 минут) появляются признаки поражения: боль под ложечкой, тошнота, рвота; затем наступают общая слабость, головная боль, о ослабление рефлексов; выделения изо рта и носа приобретают зловонный запах. В дальнейшем процесс прогрессирует: наблюдаются параличи, появляется резкая слабость и истощение. При неблагоприятном течении смерть наступает на 3 - 12 сутки в результате полного упадка сил и истощения. При тяжёлых поражениях спасти человека обычно не удаётся, а при поражении кожи пострадавший надолго теряет трудоспособность.
д) Синильная кислота - бесцветная жидкость со своеобразным запахом, напоминающим запах горького миндаля; в малых концентрациях запах трудно различимый. Синильная кислота легко испаряется и действует только в парообразном состоянии. Относится к ОВ общеядовитого действия. Характерными признаками поражения синильной кислотой являются: металлический привкус во рту, раздражение горла, головокружение, слабость, тошнота. Затем появляется мучительная одышка, замедляется пульс, отравленный теряет сознание, наступают резкие судороги. Судороги наблюдаются сравнительно недолго; на смену им приходит полное расслабление мышц с потерей чувствительности, падением температуры, угнетением дыхания с последующей его остановкой. Сердечная деятельность после остановки дыхания продолжается еще в течение 3 - 7 минут.
е) Фосген - бесцветная, легколетучая жидкость с запахом прелого сена или гнилых яблок. На организм действует в парообразном состоянии. Относится к классу ОВ удушающего действия. Фосген имеет период скрытого действия 4 - 6 часов; продолжительность его зависит от концентрации фосгена в воздухе, времени пребывания в зараженной атмосфере, состояния человека, охлаждения организма. При вдыхании фосгена человек ощущает сладковатый неприятный вкус во рту, затем появляются покашливание, головокружение и общая слабость. По выходу из зараженного воздуха признаки отравления быстро проходят, наступает период так называемого мнимого благополучия. Но через 4 - 6 часов у пораженного наступает резкое ухудшение состояния: быстро развиваются синюшное окрашивание губ, щек, носа; появляются общая слабость, головная боль, учащенное дыхание, сильно выраженная одышка, мучительный кашель с отделением жидкой, пенистой, розоватого цвета мокроты указывает на развитие отека легких. Процесс отравления фосгеном достигает кульминационной фазы в течение 2 - 3 суток. При благоприятном течении болезни у пораженного постепенно начнет улучшаться состояние здоровья, а в тяжелых случаях поражения наступает смерть.
д) Диметиламид лизергиновой кислоты является отравляющим веществом психохимического действия. При попадании в организм человека через 3 минуты появляется лёгкая тошнота и расширение зрачков, а затем - галлюцинации слуха и зрения, продолжающиеся в течение нескольких часов.

Немцы впервые применили химическое оружие 22 апреля 1915 г. вблизи г. Ипр: начали газовую атаку против французских и английских войск. Из 6 тысяч металлических баллонов было выпущено 180т. хлора по ширине фронта в 6 км. Затем они применили хлор в качестве ОВ и против русской армии. В результате только первой газобаллонной атаки было поражено около 15 тысяч солдат, из них 5 тысяч погибли от удушенья. Для защиты от отравления хлором стали применять пропитанные раствором поташа и питьевой соды повязки, а затем противогаз, в котором для поглощения хлора использовали тиосульфат натрия.
Позднее появились более сильные отравляющие вещества, содержащие хлор: иприт, хлорпикрин, хлорциан, удушающий газ фосген и др.
Уравнение реакции получения фосгена:
CІ2 + CO = COCI2.
При проникновении в организм человека фосген подвергается гидролизу:
COCI2 + H2O = CO2 + 2HCI,
что приводит к образованию соляной кислоты, от которой воспаляются ткани дыхательных органов и затрудняется дыхание.
Фосген используют и в мирных целях: в производстве красителей, в борьбе с вредителями и болезнями сельскохозяйственных культур.
Хлорную известь (CaOCI2) используют в военных целях как окислитель при дегазации, разрушающий боевые отравляющие вещества, и в мирных целях – для отбеливания хлопчатобумажных тканей, бумаги, для хлорирования воды, дезинфекции. Применение этой соли основано на том, что при взаимодействии её с оксидом углерода (IV) выделяется свободная хлорноватистая кислота, которая разлагается:
2CaOCI2 + CO2 + H2O = CaCO3 + CaCI2 + 2HOCI;
HOCI = HCI + O.
Кислород в момент выделения энергично окисляет и разрушает отравляющие и другие отравляющие вещества, оказывает отбеливающие и дезинфицирующие действие.
Оксиликвит - взрывоопасная смесь любой горючей пористой массы с жидким кислородом. Их использовали во время первой мировой войны вместо динамита.
Главное условие выбора горючего материала для оксиликвита – его достаточная рыхлость, способствующая лучшей пропитке его жидким кислородом. Если горючий материал плохо пропитан, то после взрыва часть его останется несгоревшей. Оксиликвитный патрон – это длинный мешочек, наполненный горючим материалом, в который вставляется электрический запал. В качестве горючего материала для оксиликвитов используют древесные опилки, уголь, торф. Патрон заряжают непосредственно перед закладкой в шпур, погружая его в жидкий кислород. Таким способом иногда готовили патроны и в годы Великой Отечественной войны, хотя в основном для этой цели использовали тринитротолуол. В настоящее время оксиликвиты применяют в горной промышленности для взрывных работ.
Рассматривая свойства серной кислоты, важно о её использовании при производстве взрывчатых веществ (тротил, октоген, пикриновая кислота, тринитроглицерин) в качестве водоотнимающего средства в составе нитрирующей смеси (HNO3 и H2 SO4).
Раствор аммиака (40 %-ный) применяют для дегазации техники, транспорта, одежды и т.д. в условиях применения химического оружия (зарин, зоман, табун).
На основе азотной кислоты получают ряд сильных взрывчатых веществ: тринитроглицерин, и динамит, нитроклетчатку (пироксилин), тринитрофенол (пикриновую кислоту), тринитротолуол и др.
Хлорид аммония NH4CI применяют для наполнения дымовых шашек: при возгорании зажигательной смеси хлорид аммония разлагается, образуя густой дым:
NH4CI = NH3 + HCI.
Такие шашки широко использовали в годы Великой Отечественной войны.
Нитрат аммония служит для производства взрывчатых веществ - аммонитов, в состав которых входят ещё и другие взрывчатые нитросоединения, а также горючие добавки. Например, в состав аммонала входит тринитротолуол и порошкообразный алюминий. Основная реакция, которая протекает при его взрыве:
3NH4NO3 + 2AI = 3N2 + 6H2O + AI2O3 + Q.
Высокая теплота сгорания алюминия повышает энергию взрыва. Нитрат алюминия в смеси с тринитротолуолом (толом) даёт взрывчатое вещество аммотол. Большинство взрывчатых смесей содержат в своём составе окислитель (нитраты металлов или аммония и др.) и горючие (дизельное топливо, алюминий, древесную муку и др.).
Нитраты бария, стронция и свинца используют в пиротехнике.
Рассматривая применение нитратов, можно рассказать об истории получения и применения чёрного, или дымного, пороха – взрывчатой смеси нитрата калия с серой и углём (75 % KNO3, 10% S, 15 % C). Реакция горения дымного пороха выражается уравнением:
2KNO3 + 3C + S = N2 + 3CO2 + K2S + Q.
Два продукта реакции – газы, а сульфид калия – твёрдое вещество, образующее после взрыва дым. Источник кислорода при сгорании пороха – нитрат калия. Если сосуд, например запаянная с одного конца трубка, закрыт подвижным телом ­– ядром, то оно под напором пороховых газов выбрасывается. В этом проявляется метательное действие пороха. А если стенки сосуда, в котором находится порох, недостаточно прочны, то сосуд разрывается под действием пороховых газов на мелкие осколки, которые разлетаются вокруг с огромной кинетической энергией. Это бризантное действие пороха. Образующийся сульфид калия – нагар – разрушает ствол оружия, поэтому после выстрела для чистки оружия используют специальный раствор, в состав которого входит карбонат аммония.
Шесть веков продолжалось господство чёрного пороха в военном деле. За столь длительный срок его состав практически не изменился, менялся лишь способ производства. Только в середине прошлого века вместо чёрного пороха стали использовать новые взрывчатые вещества с большей разрушительной силой. Они быстро вытеснили чёрный порох с военной техники. Теперь его применяют в качестве взрывчатого вещества в горном деле, в пиротехнике (ракеты, фейерверки), а также как охотничий порох.
Фосфор (белый) широко применяют в военном деле в качестве зажигательного вещества, используемого для снаряжения авиационных бомб, мин, снарядов. Фосфор легко воспламеняется и при горении выделяет большое количество теплоты (температура горения белого фосфора достигает 1000 - 1200°С). При горении фосфор плавится, растекается и при попадании на кожу вызывает долго не заживающие ожоги, язвы.
При сгорании фосфора на воздухе получается фосфорный ангидрид, пары которого притягивают влагу из воздуха и образуют пелену белого тумана, состоящего из мельчайших капелек раствора метафосфорной кислоты. На этом свойстве основано его применение в качестве дымообразующего вещества.
На основе орто - и метафосфорной кислот созданы самые токсичные фосфорорганические отравляющие вещества (зарин, зоман, VX – газы) нервно-паралитического действия. Защитой от их вредного воздействия служит противогаз.
Графит благодаря его мягкости широко используют для получения смазочных материалов, применяющихся в условиях высоких и низких температур. Чрезвычайная жаростойкость и химическая инертность графита позволяют использовать его в атомных реакторах на атомных подводных лодках в виде втулок, колец, как замедлитель тепловых нейтронов, конструкционный материал в ракетной технике.
Сажу (технический углерод) применяют в качестве наполнителя резины, используемой для оснащения бронетанковой, авиационной, автомобильной, артиллерийской и другой военной техники.
Активированный уголь – хороший адсорбент газов, поэтому его применяют как поглотитель отравляющих веществ в фильтрующих противогазах. В годы Первой мировой войны были большие человеческие потери, одной из главных причин было отсутствие надёжных индивидуальных средств защиты от отравляющих веществ. Н.Д.Зелинский предложил простейший противогаз в виде повязки с углём. В дальнейшем он вместе с инженером Э.Л.Кумантом усовершенствовал простые противогазы. Они предложили изоляционно-резиновые противогазы, благодаря которым были спасены жизни миллионов солдат.
Оксид углерода (II) (угарный газ) входит в группу общеядовитого химического оружия: он соединяется с гемоглобином крови, образуя карбоксигемоглобин. В результате этого гемоглобин утрачивает способность связывать и переносить кислород, наступает кислородное голодание и человек погибает от удушья.
В боевой обстановке при нахождении в зоне горения огнеметно-зажигательных средств, в палатках и других помещениях с печным отоплением, при стрельбе закрытых помещениях может произойти отравление угарным газом. А так как оксид углерода (II) имеет высокие диффузионные свойства, то обычные фильтрующие противогазы не способны очистить заражённый этим газом воздух. Учёные создали кислородный противогаз, в специальных патронах которого помещены смешанные окислители: 50 % оксида марганца (IV), 30 % оксида меди (II), 15 % оксида хрома (VI) и 5 % оксида серебра. Находящийся в воздухе оксид углерода (II) окисляется в присутствии этих веществ, например:
CO + MnO2 = MnO + CO2.
Человеку, поражённому угарным газом, необходимы свежий воздух, сердечные средства, сладкий чай, в тяжёлых случаях – в дыхание кислорода, искусственное дыхание.
Оксид углерода (IV)(углекислый газ) в 1,5 раза тяжелее воздуха, не поддерживает процессы горения, применяется для тушения пожаров. Углекислотный огнетушитель заполнен раствором гидрокарбоната натрия, а в стеклянной ампуле находится серная или соляная кислота. При ведении огнетушителя в рабочее состояние начинает протекать реакция:
2NaHCO3 + H2SO4 = Na2SO4 + 2H2O + 2CO2 .
Выделяющийся углекислый газ обволакивает плотным слоем очаг пожара, прекращая доступ кислорода воздуха к горящему объекту. В годы Великой Отечественной войны такие огнетушители использовали при защите жилых зданий городов и промышленных объектов.
Оксид углерода (IV) в жидком виде – хорошее средство, используемое в пожаротушении реактивных двигателей, устанавливаемых на современных военных самолётах.
Кремний, будучи полупроводником, находит широкое применение в современной военной электронике. Его используют при изготовлении солнечных батарей, транзисторов, диодов, детекторов частиц в приборах радиационного контроля и радиационной разведки.
Жидкое стекло (насыщенные растворы Na2SiO3 и K2SiO3) – хорошая огнезащитная пропитка для тканей, дерева, бумаги.
Силикатная промышленность производит различные виды оптических стёкол, используемых в военных приборах (бинокли, перископы, дальномеры); цемент для сооружения военно-морских баз, шахтных пусковых установок, защитных сооружений.
В виде стеклянного волокна стекло идёт на производство стеклопластиков, используемых в производстве ракет, подводных лодок, приборов.
При изучении металлов рассмотрим их применение в военном деле
Благодаря прочности, твёрдости, жаростойкости, электропроводности, способности подвергаться механической обработке металлы находят широчайшее применение в военном деле: в самолёто- и ракетостроении, при изготовлении стрелкового оружия и бронированной техники, подводных лодок и военно-морских кораблей, снарядов, бомб, радиоаппаратуры и т.д.
Алюминий обладает высокой коррозионной стойкостью к воде, однако имеет небольшую прочность. В авиа- и ракетостроении применяют сплавы алюминия с другими металлами: медью, марганцем, цинком, магнием, железом. Термически обработанные соответствующим образом, эти сплавы отличаются прочностью, сравниваемой с прочностью среднелегированной стали.
Так, некогда самая мощная в США ракета «Сатурн-5», с помощью которой были запущены космические корабли серии «Аполлон», сделана из алюминиевого сплава (алюминий, медь, марганец). Из алюминиевого сплава делают корпуса боевых межконтинентальных баллистических ракет «Титан-2». Лопасти винтов самолётов и вертолётов изготавливают из сплава алюминия с магнием и кремнием. Этот сплав может работать в условиях вибрационных нагрузок и обладает очень высокой коррозийной стойкостью.
Термит (смесь Fe3O4 c порошком AI) применяют для изготовления зажигательных бомб и снарядов. При поджигании этой смеси происходит бурная реакция с выделением большого количества теплоты:
8AI + 3Fe3O4 = 4AI2O3 + 9Fe + Q.
Температура в зоне реакции достигает 3000°С. При такой высокой температуре плавится броня танков. Термитные снаряды и бомбы обладают большой разрушительной силой.
Натрий как теплоноситель применяют для отвода тепла от клапанов в авиамоторах, как теплоноситель в атомных реакторах (в сплаве с калием).
Пероксид натрия Na2O2 применяют как регенератор кислорода на военных подводных. Твёрдый пероксид натрия, заполняющий систему регенерации, взаимодействует с углекислым газом:
2Na2O2 + 2CO2 = 2Na2CO3 + O2 .
Эта реакция лежит в основе современных изолирующих противогазов (ИП), которые используют в условиях недостатка кислорода в воздухе, применение боевых отравляющих веществ. Изолирующие противогазы находятся на вооружении экипажей современных военно-морских кораблей и подводных лодок, именно эти противогазы обеспечивают выход экипажа из затопленного танка.
Гидроксид натрия используют для приготовления электролита для щёлочных аккумуляторных батарей, которыми снаряжают современные военные радиостанции.
Литий используют при изготовлении трассирующих пуль и снарядов. Соли лития придают им яркий сине-зелёный след. Литий применяют также в атомной и термоядерной технике.
Гидрид лития служил американским лётчикам в годы Второй мировой войны портативным источником водорода . При авариях над морем под действием воды таблетки гидрида лития моментально разлагались, наполняя водородом спасательные средства – надувные лодки, плоты, жилеты, сигнальные шары-антенны:
LiH + H2O = LiOH + H2.
Магний используют в военной техники при изготовлении осветительных и сигнальных ракет, трассирующих пуль, снарядов и зажигательных бомб. При поджигании магния очень яркое, ослепительно белого цвета пламя, за счёт которого удаётся в ночное время осветить значительную часть территории.
Лёгкие и прочные сплавы магния с медью, алюминием, титаном, кремнием, находят широкое применение в ракето-, машино-, самолетостроении. Из них готовят шасси и стойки шасси для военных самолётов, отдельные детали для корпусов ракет.
Железо и сплавы на его основе (чугун и сталь) широко используют в военных целях. При создании современных систем вооружения применяют разнообразные марки легированных сталей.
Молибден придает стали высокую твёрдость, прочность и вязкость. Известен следующий факт: броня английских танков, участвующих в сражениях Первой мировой войны, была изготовлена из но хрупкой марганцевой стали. Снаряды немецкой артиллерии свободно пробивали массивный панцирь из такой стали толщиной 7,5 см. Но стоило прибавить к стали лишь 1,5-2% молибдена, как танки стали неуязвимыми при толщине броневого листа 2,5 см. Молибденовая сталь идёт на изготовление брони танков, корпусов кораблей, стволов орудий, ружей, деталей самолётов.
Кобальт применяют при создании жаропрочных сталей, которые идут на изготовление деталей авиационных двигателей, ракет.
Хром­ придаёт стали твёрдость и износоустойчивость. Хромом легируют пружинные и рессорные стали, применяемые в автомобильной, бронетанковой, ракетно-космической и других видах военной технике.

Велики заслуги учёных в предвоенное и настоящее время, я остановлюсь на вкладе учёных в победу в ВОВ. Поскольку работа учёных не только помогла победе, но и заложила основу мирного существования в послевоенный период.
Учёные химики принимали самое активное участие в обеспечении победы над фашисткой Германией. Они разрабатывали новые способы производства взрывчатых веществ, топлива для реактивных снарядов, высокооктановых бензинов, каучуков, броневой стали, лёгких сплавов для авиации, лекарственных препаратов.
Объём производства химической продукции к концу войны приблизился к довоенному уровню: в 1945 г. он составил 92 % от показателей 1940 г.
Академик Александр Ерминингельдович Арбузов - основоположник одного из новейших направлений науки – химии фосфорорганических соединений. Его деятельность была неразрывно связана с прославленной Казанской школой химиков. исследования Арбузова были всецело посвящены нуждам обороны и медицины. Так, в марте 1943 г. физик-оптик С.И. Вавилов писал Арбузову: «Обращаюсь к Вам с большой просьбой – изготовить в вашей лаборатории 15 г 3,6-диаминофтолимида. Оказалось, что этот препарат, полученный от Вас, обладает ценными свойствами в отношении флуоресценции и адсорбции и сейчас нам необходим для изготовления нового оборонного оптического прибора». Препарат был, его использовали при изготовлении оптики для танков. Это имело большое значение для обнаружения врага на далёком расстоянии. В дальнейшим А.Е.Арбузов выполнял и другие заказы оптического института на изготовление различных реактивов.
С именем академика Николая Дмитриевича Зелинского связана целая эпоха в истории отечественной химии. Ещё в Первую мировую войну он создал противогаз. В период 1941-1945гг. Н.Д.Зелинский возглавлял научную школу, исследования которой были направлены на разработку способов получения высокооктанового топлива для авиации, мономеров для синтетического каучука.
Вклад академика Николая Николаевича Семёнова в обеспечение победы определялся разработанной им теории цепных разветвлённых реакций, которая позволяла управлять химическими процессами: ускорять реакции вплоть до образования взрывной лавины, замедлять и даже останавливать их на любой промежуточной станции. В начале 40-х гг. Н.Н.Семёнов и его сотрудники исследовали процессы взрыва, горения, детонации. Результаты этих исследований в том или ином виде использовались во время войны при производстве патронов, артиллерийских снарядов, взрывчатых веществ, зажигательных смесей для огнемётов. Результаты исследований, посвященных вопросам отражения и столкновения ударных волн при взрывах, были использованы уже в первый период войны при создании кумулятивных снарядов, гранат и мин для борьбы с вражескими танками.
Академик Александр Евгеньевич Ферсман не раз говорил, что его жизнь – жизнь история любви к камню. Первооткрыватель и неутомимый исследователь апатитов на Кольском полуострове, радиевых руд в Фергане, серы в Каракумах, вольфрамовых месторождений в Забайкалье, один из создателей промышленности редких элементов, он с первых дней войны активно включился в процесс переведения науки и промышленности на военные рельсы. Он выполнял специальные работы по военно-инженерной геологии, военной географии, по вопросам изготовления стратегического сырья, маскировочных красок. В 1941 г. на антифашистском митинге учёных он говорил: «Война потребовала грандиозного количества основных видов стратегического сырья. Потребовался целый ряд новых металлов для авиации, для бронебойной стали, потребовался магний, стронций для осветительных ракет и факелов, потребовалось больше йода… И на нас лежит ответственность за обеспечение стратегическим сырьём, мы должны помочь своими знаниями создать лучшие танки, самолёты, чтобы скорее освободить все народы от нашествия гитлеровской банды».
Крупнейший химик-технолог Семен Исаакович Вольфкович исследовал соединения фосфора, был директором НИИ удобрений и инсектицидов. Сотрудники этого института создавали фосфорно-серные сплавы для бутылок, которые служили противотанковыми «бомбами», изготовляли химические грелки для бойцов, дозорных, разрабатывали необходимые санитарной службе средства против обморожений, ожогов, другие лекарственные препараты.
Профессор Военной академии химической защиты Иван Людвигович Кнунянц разработал надёжные средства индивидуальной защиты людей от отравляющих веществ. За эти исследования в 1941 г. он был удостоен Государственной премии СССР.
Ещё до начала Великой отечественной войны профессор Военной академии химической защиты Михаил Михайлович Дубинин проводил исследования сорбции газов, паров и растворённых веществ твёрдыми пористыми телами. М.М.Дубинин – призванный авторитет по всем основным вопросам, связанных с противохимической защитой органов дыхания.
С самого начала войны перед учёными была поставлена задача: разработать и организовать производство препаратов для борьбы с инфекционными заболеваниями, в первую очередь с сыпным тифом, переносчиками которого являются вши. Под руководством Николая Николаевича Мельникова было организованно производство дуста, а также различных антисептиков для деревянных самолётов.
Академик Александр Наумович Фрумкин – один из основоположников современного учения об электрохимических процессах, основатель школы электрохимиков. Изучал вопросы защиты металлов от коррозии, разработал физико-химический метод крепления грунтов для аэродромов, рецептуру для огнезащитной пропитки дерева. Вместе с сотрудниками разработал электрохимические взрыватели. Он говорил: «Несомненно, что химия является одним из существенных факторов, от которых зависит успех современной войны. Производство взрывчатых веществ, качественных сталей, лёгких металлов, топлива – всё это разнообразные виды применения химии, не говоря уж о специальных формах химического оружия. В современной войне немецкая химия подарила миру пока одну «новинку» - это массовое применение возбуждающих и наркотических веществ, которые дают немецким солдатам перед тем, как послать их на верную смерть. Советские химики призывают учёных всего мира использовать свои знания для борьбы с фашизмом».
Академик Сергей Семенович Наметкин – один из основоположников нефтехимии, успешно работал в области синтеза новых металлорганических соединений, отравляющих и взрывчатых веществ. Во время войны занимался вопросами химической защиты, развитием производства моторных топлив и масел.
Исследования Валентина Алексеевича Каргина охватывали широкий круг вопросов физической химии, электрохимии и физикохимии высокомолекулярных соединений. Во время войны В.А.Каргин разработал специальные материалы для изготовления одежды, защищающей от действия отравляющих веществ, принцип и технологию нового метода обработки защитных тканей, химические составы, делающие валяную обувь непромокаемой, специальные типы резин для боевых машин нашей армии.
Профессор, начальник Военной академии химической защиты и начальник кафедры аналитической химии Юрий Аркадьевич Клячко организовал из состава академии батальон и был начальником боевого участка на ближайших подступах к Москве. Под его руководством была развёрнута работа по созданию новых средств химической обороны, в том числе исследования дымов, антидотов, огнемётных средств.
17 июня 1925 г. 37 государств подписали Женевский протокол – международное соглашение о запрещении применения на войне удушливых, ядовитых или других подобных газов. К 1978 г. документ подписали почти все страны.

Химическое оружие, конечно, нужно уничтожать и как можно быстрее, это смертельное оружие против человечества. Ещё люди помнят, как фашисты в концлагерях умертвили сотни тысяч человек в газовых камерах, как американские войска испытывали химическое оружие во время войны во Вьетнаме. Применение химического оружия в наши дни запрещено международным соглашением. В первой половине XX в. отравляющие вещества либо топили в море, либо закапывали в землю. Чем это чревато- пояснять не надо. Сейчас отравляющие вещества сжигают, но и этот способ имеет свои недостатки. При горении в обычном пламени их концентрация в отходящих газах в десятки тысяч раз превышает предельно допустимую. Относительную безопасность даёт высокотемпературный дожиг отходящих газов в плазменной электропечи (метод, принимаемый в США).
Другой подход к уничтожению химического оружия заключается в предварительном обезвреживании отравляющих веществ. Образовавшиеся нетоксичные массы можно сжечь или переработать в твёрдые нерастворимые блоки, которые затем захоронить в специальных могильниках или использовать в дорожном строительстве.
В настоящее время широко обсуждается концепция уничтожения отравляющих веществ непосредственно в боеприпасах, предлагается переработка нетоксичных реакционных масс в химическую продукцию коммерческого назначения. Но уничтожение химического оружия и научные исследования в этой области требуют больших капиталовложений.
Хотелось бы надеяться, что проблемы будут решены и мощь химической науки будет направлена не на разработку новых отравляющих веществ, а на решение глобальных проблем человечества.

Читайте также: