Морфология вирусов и их классификация. Морфология и физиология вирусов

Вирусы являются самыми мелкими из всех микроорганизмов. Для них принято измерение в миллимикронах и в ангстремах. Для определения таких размеров частиц применяется несколько методов. Так, взвесь вирусов пропускают через особые фильтры из коллодия, имеющие очень мелкие поры определенной величины. Фильтрование производят через несколько фильтров с разной величиной пор. Разница между диаметрами пор последнего фильтра, пропустившего вирусные частицы, и фильтра, уже не пропустившего вирусные частицы, указывает средние размеры вирусных частиц. При сверхскоростном центрифугировании (50 и более тысяч оборотов в минуту) величина вирусных частиц определяется по специальной формуле в зависимости от числа оборотов и времени осаждения частиц. При этом происходит и очистка вируса от посторонних веществ. Для этого подбирают такие скорости, при которых выпадают посторонние частицы, сначала крупные, а потом самые мелкие. При наиболее высокой скорости получают лишь частицы вируса.

Человек увидел вирусы только после 1940 г., когда был построен и усовершенствован электронный микроскоп. При увеличении в десятки и сотни тысяч раз удалось изучить форму, величину, а также строение частиц некоторых вирусов.

Было найдено, что как величина, так и форма отдельных особей (элементарных частиц) разных видов вирусов довольно разнообразны. Имеются крупные вирусы (например, вирус орнитоза, оспы, трахомы и др.), вирусы средних размеров (гриппа, чумы, бешенства) и мелкие (вирус полиомиелита, кори, ящура, энцефалитов, вирусы многих растений). В таблице приводятся размеры некоторых вирусов, определенные разными способами, в миллимикронах (по В. М. Жданову и Шен).

Самые крупные вирусы приближаются по своим размерам к самым мелким бактериям, а самые мелкие вирусы близки к крупным белковым молекулам.

По внешнему виду одни вирусы имеют шарообразную форму (вирус гриппа), другие - кубовидную форму (вирус оспы), третьи - вид палочки. Вирус табачной мозаики (ВТМ) имеет вид тонкой шестигранной палочки длиной 300 ммк и в диаметре 15 ммк.

При многих вирусных инфекциях (оспа, бешенство, трахома и др.) наблюдаются в цитоплазме или ядре клетки организма хозяина особые, специфические для каждой инфекции внутриклеточные тельца - включения. Они довольно крупные, и их можно видеть в световой микроскоп.

В большинстве случаев включения представляют собой скопление элементарных телец, вирусных частиц, как бы их колонию. Наличие их в клетках помогает при диагностике некоторых заболеваний.

Одним из своеобразных свойств многих вирусов растений является их способность образовывать кристаллы. Д. И. Ивановский первый наблюдал в листьях табака, пораженных ВТМ, включения, называемые теперь кристаллами Ивановского. Они состоят из элементарных частиц вируса табачной мозаики. Кристаллы вируса можно растворять, как растворяют сахар, соль. Из раствора этот вирус можно выделить в аморфном, некристаллическом, состоянии. Осадок можно вновь растворить, затем снова превратить в кристаллы. Если растворить кристаллический вирус в тысячу раз, то капля такого раствора вызовет у растения мозаичную болезнь. Из вирусов человека и животных пока получены кристаллы вируса полиомиелита. Каждый кристалл состоит из миллионов вирусных частиц.

Химический состав вирусов был изучен прежде всего у возбудителя табачной мозаики. Этот вирус представляет собой чистый нуклеопротеид, т. е. состоит из белка и нуклеиновой кислоты. Вирусный нуклеопротеид табачной мозаики имеет огромный молекулярный вес (40-50 млн.).

Вирусная частица имеет сложное строение. Нуклеиновая кислота находится внутри вирусной частицы, она окружена белковой оболочкой. В вирусной частице обычно содержится одна молекула нуклеиновой кислоты.

Вирусы растений содержат рибонуклеиновую кислоту, фаги содержат дезоксирибонуклеиновую кислоту. В вирусах человека и животных находится или РНК, или ДНК. РНК содержится в вирусах гриппа (1,6%), полиомиелита (24%), некроза табака (18%), мозаики табака (6%), ящура (40%), саркомы Рауса (10%) и др. ДНК содержится в вирусах осповакцин (6%), папилломы (6,8%), герпеса (3,8%), полиомы (12%) и др.

Теперь интенсивно изучается вопрос, как соединяются белок и нуклеиновая кислота, как они подогнаны друг к другу. Для разрешения этого вопроса пользуются методом рентгенокристаллографии. Если в вирусной частице имеются субъединицы, то этот метод может установить их число, а также их взаимное расположение. Оказалось, что для большинства вирусов характерно закономерное, высокоупорядоченное расположение элементов вирусной частицы.

У вируса полиомиелита нуклеиновая кислота свернута в клубок, белковая оболочка состоит из 60 одинаковых субъединиц, которые объединены в 12 групп, по 5 субъединиц в каждой. Частица вируса имеет сферическую форму.

Нуклеиновая кислота вируса табачной мозаики имеет вид спирали или пружины. Белковая оболочка ВТМ состоит также из отдельных одинаковых по форме и размерам белковых субъединиц. Всего имеется 2200 субъединиц, расположенных в виде 130 витков вокруг стержня нуклеиновой кислоты. Молекулярный вес такой субъединицы 18 000. Каждая субъединица представляет собой пептидную цепочку, содержащую 158 определенных аминокислот, причем уже определено последовательное расположение этих аминокислот. В настоящее время интенсивно изучается последовательность расположения 6500 нуклеотидов, образующих нуклеиновую кислоту. Когда эта задача будет решена, то станет известен план, которым определяется тип вируса, образующегося в зараженной клетке. Строение, подобное частицам ВТМ и полиомиелита, имеют другие мелкие вирусы растений.

У более крупных вирусов, кроме нуклеиновой кислоты, белковой оболочки, есть еще внешние оболочки, содержащие белки, липоиды, углеводы. Некоторые вирусы содержат ферменты. Так, гриппозный вирус имеет фермент нейраминидазу, парагриппозный вирус - сендай-лизин, вирус миелобластоза птиц содержит аденовинтрифосфатазу. Эти ферменты растворяют оболочку клеток для проникновения вируса в тело своего будущего хозяина.

В свободном состоянии, во внешней среде вне живой клетки, вирусы не проявляют активности, они только сохраняют свою жизнеспособность, иногда продолжительное время. Но как только вирусы встречаются с чувствительными к ним клетками, они становятся активными, внедряются в них и проявляют все признаки жизнедеятельности.

Единственным методом изучения жизнедеятельности вирусов раньше было заражение восприимчивых к ним опытных животных: мышей, кроликов, обезьян и др. Более удобно и экономно выращивать вирусы в развивающемся зародыше куриного яйца. Материал, содержащий вирус, вводят шприцем в зародыш на 8-12-й день его развития. Через несколько дней пребывания зародыша в термостате изучают патологические изменения, вызываемые вирусом в зародыше. Затем пересевают в свежий зародыш другого яйца. В последнее время получил наибольшее применение метод однослойных культур из изолированных клеток животных тканей. Размельченную свежую ткань обрабатывают ферментом трипсином, который разрушает межклеточные связи. Освободившиеся клетки отмывают от трипсина, разводят питательным составом (№ 199, содержащим необходимые аминокислоты и соли) и помещают в пробирки или в специальные плоские чашки. В термостате клетки размножаются, образуя однослойный пласт по стеклу. Затем эту культуру однородных клеток заражают вирусом и происходящие в ней процессы изучают под микроскопом или другими способами. Так трудоемкий и дорогой способ, например культура вируса полиомиелита на печени обезьян, был заменен быстрым способом выращивания его в тканевой культуре.

В 1955 г. и позднее были получены необычные факты, вызвавшие недоумение у ученых биологов. Химическим путем вирус табачной мозаики был разделен на свои составные части: белок и нуклеиновую кислоту. Каждая из них в отдельности не вызывала заболевания мозаикой у листьев табака. Но когда их опять соединили вместе в пробирке (10 частей белка и 1 часть нуклеиновой кислоты) и заразили этой смесью листья табака, то получили типичную мозаику на листьях, как от исходного цельного ВТМ. При электронной микроскопии были найдены типичные палочки вируса, состоящие из белковой оболочки, в которой был заключен тяж нуклеиновой кислоты. Таким образом, нуклеиновая кислота связалась с белковой частью и заняла в ней свое нормальное положение. Открытие этого явления - ресиитеза (восстановления) вируса - является крупнейшим достижением современной микробиологии, открывающим новые пути в биологии и медицине.

Далее оказалось, что достаточно натереть лист табака лишь одной нуклеиновой кислотой, выделенной из ВТМ мягким способом, как на листе возникают (конечно, не в большом количестве) типичные некрозы, в которых находились в огромном количестве типичные цельные вирусные частицы.

Такие же результаты были получены с вирусами человека: полиомиелита, гриппа и др.

Выл получен даже гибридный вирус мозаики табака из белка одного типа вируса и РНК другого типа вируса, отличавшегося по некоторым признакам от вируса первого типа. При размножении этот гибридный вирус давал потомство только того вируса, чью РНК содержал гибрид.

Все эти факты говорят о том, что нуклеиновым кислотам принадлежит ведущая роль в размножении вирусов и инфекциозности их. Нуклеиновые кислоты обеспечивают передачу наследственных свойств. В кислотах заключена наследственная информация по синтезу полноценных вирусных частиц внутри клетки.

Белковая оболочка вируса несет защитную функцию, охраняя от внешних воздействий хрупкую нить нуклеиновой кислоты, кроме того, помогает вирусу проникать в клетку, определяет специфичность вирусов. Но некоторые ученые не считают возможным так ограничивать значение белков. Нужны дальнейшие исследования о роли вирусных белков.

Процесс размножения вирусов принципиально отличается от процесса размножения бактерий, простейших и других клеточных организмов.

Различают четыре фазы этого процесса: прикрепление вирусных частиц к клетке хозяина, проникновение вируса внутрь клетки, внутриклеточное размножение вируса и выход новых частиц вируса из клетки.

Первая фаза - прикрепление, или адсорбция, вируса к клетке - изучена в отношении вирусов гриппа и полиомиелита. Стенка клетки имеет мозаичное строение, в одних местах ее выступают молекулы мукопротеидов, в других молекулы липопротеидов. Вирус гриппа адсорбируется на мукопротеидах, а вирус полиомиелита адсорбируется на липопротеидах. Адсорбцию можно наблюдать в электронный микроскоп. В месте адсорбции вируса на стенке клетки образуется углубление, куда втягивается частица вируса. Края углубления смыкаются, и частица вируса оказывается внутри клетки (виропексис). Одновременно с виропексисом происходит разрушение белковой оболочки вируса. Проникновению вируса гриппа в клетку способствует фермент его оболочки. Таким образом, в клетку проникает нуклеиновая кислота, освобожденная от белковых оболочек с помощью ферментов самой клетки.

В третьей фазе проникшая в клетку вирусная нуклеиновая кислота включается в обмен веществ клетки и направляет аппарат синтеза клетки на производство белка и нуклеиновой кислоты не клетки, а новых вирусных частиц. Деятельность ферментов, участвующих в синтезе вируса, активизируется, а остальных ферментов тормозится. Кроме того, создаются новые ферменты, которых клетка не имела, но которые необходимы для синтеза вирусных частиц. Можно полагать, что в это время организуется новая единая система вирус - клетка, переключенная на синтез вирусного материала. В начале этой фазы не удается различить в клетке какие-либо элементы вируса.

Обычно нуклеиновые кислоты и белки вируса синтезируются не одновременно и в разных местах клетки. Сначала начинается синтез нуклеиновой кислоты, а затем несколько позднее идет синтез белка. После накопления этих составных частей вируса происходит их объединение, сборка в полноценные вирусные частицы. Иногда образуются неполные вирусные частицы, лишенные нуклеиновой кислоты и потому неспособные к самопроизводству (бублики).

Быстро наступает последняя фаза - выход вирусных частиц из клетки. В каком-либо месте клетки сразу выходит около 100 частиц вируса, У более сложных вирусов имеются еще внешние оболочки вирусного нуклеопротеида, которыми они обволакиваются во время прохождения через клетку и выхода из нее, при этом в состав внешних оболочек входят белки клетки хозяина.

У вирусов человека и животных выход нового потомства происходит в несколько циклов. Так, у вируса гриппа каждый цикл продолжается часов 5-6 с выходом 100 и более вирусных частиц одной клетки, а всего наблюдается 5-6 циклов в течение 30 часов. После этого способность клетки производить вирус истощается, и она погибает. Весь процесс размножения парагриппозного вируса Сен дай от адсорбции до выхода из клетки продолжается 5-6 часов.

Иногда частицы вируса не выходят из клетки, а скапливаются в ней в виде внутриклеточных включений, очень характерных для разных видов вирусов. Вирусы растений образуют включения, имеющие кристаллическую форму.

Большое внимание начинает привлекать к себе семейство микробов, получившее название "микоплазма", так как за последнее время в этой группе обнаружены возбудители различных заболеваний человека и животных. В виде скрытой инфекции они часто обитают во многих тканевых культурах - Хела и др. Микоплазмы занимают промежуточное положение между бактериями и вирусами. С вирусами их сближает фильтруемость через бактериальные фильтры, фильтрующиеся формы способны к саморепродукции, внутриклеточному размножению. К признакам, сближающим вирусы с бактериями, относится способность расти на питательных средах, образовывать на них колонии, а также отношение к антибиотикам, сульфамидам и их антигенная структура.

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

    Вирусы классифицируются на те, которые содержат ДНК (вирус простого герпеса) и те, что содержат РНК (вирус иммунодефицита человека).

    По структуре капсомеров. Изометрические (кубические), спиральные, смешанные.

    По наличию или отсутствию дополнительной липопротеидной оболочки

    За клетками-хозяевами

Наиболее применяемая в настоящее время классификация вирусов предложенная лауреатом Нобелевской премии Дэвидом Балтимор. Она построена на типе нуклеиновой кислоты, которая используется вирусом для переноса наследственного материала, и на том, каким путем происходит ее экспрессия и репликация. Стоит отметить, что такая классификация не отражает филогенетические связи между видами вирусов, так как вирусы, согласно общепринятым сейчас взглядом, имеют механизмы происхождения, отличные от всех других организмов.

В отличие от клеточных организмов, генетическая информация которых хранится в виде двухцепочечной ДНК, геном вируса может сохраняться как в виде двух-, так одноцепочечныхнуклеиновых кислот. При этом этой кислотой может быть как ДНК, так и РНК, матричная форма которой (м-РНК) используется в клетках как промежуточный продукт при трансляции генетической информации в процессе синтеза протеинов. РНК-геномы вирусов могут быть закодированы в двух противоположных направлениях: или гены расположены в направлении от 5"-конца молекулы к 3"-концу (положительное направление, или + полярность), аналогично направлению расположения генов в м-РНК в клетках, или гены вирусного генома расположены в противоположном направлении (отрицательный направление, или-полярность).

Таксономия вирусов в основных чертах похожа на таксономию клеточных организмов. Таксономические категории, используемые в классификации вирусов, такие (в скобках приведены суффиксы для образования латинских названий):

    Ряд (-virales )

    Семья (-viridae )

    Подсемейство (-virinae )

    Род (-virus )

Но в номенклатуре вирусов есть и некоторые особенности, отличающие ее от номенклатуры клеточных организмов. Во-первых, названия не только видов и родов, но также рядов и семей пишутся курсивом, во-вторых, в отличие от классической линнеевськои номенклатуры, названия вирусов не является биноминальной (т.е. образованными из названия рода и эпитета вида - подробнее см.. в статье «Научная классификация»). Обычно названия вирусов образуются в форме [Болезнь] -вирус.

В целом в настоящее время описано около 80 семей, в которые входят примерно 4000 отдельных видов вирусов.

Распределение семей на ряды начался недавно и происходит медленно; в настоящее время (2005 год) выделено и описано диагностические признаки только трех рядов, и большинство описанных семей является неклассифицированных.

Микробиология: конспект лекций Ткаченко Ксения Викторовна

1. Морфология и структура вирусов

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

Морфология. Мы видели, что члены одного и того же класса, независимо от их образа жизни, сходны между собой по общему плану организации. Это сходство часто выражается термином «единство типа» или указанием на то, что некоторые части и органы у различных видов одного и того

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9/10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий 1. Особенности строения бактериальной клетки. Основные органеллы и их функции Отличия бактерий от других клеток1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.2. В клеточной стенке бактерий

Из книги Микробиология автора Ткаченко Ксения Викторовна

3. Культивирование вирусов Основные методы культивирования вирусов:1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных

Из книги Общая экология автора Чернова Нина Михайловна

1. Морфология и культуральные свойства Возбудитель относится к роду Carinobakterium, виду C. difteria.Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен выраженный полиморфизм. На концах булавовидные утолщения – метахроматические зерна волютина.

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

1. Морфология и культуральные свойства Возбудитель относится к роду Mycobakterium, вид M. tuberculesis.Это тонкие палочки, слегка изогнутые, спор и капсул не образуют. Клеточная стенка окружена слоем гликопептидов, которые называются микозидами (микрокапсулами).Туберкулезная палочка

Из книги Путешествие в страну микробов автора Бетина Владимир

4. Морфология бактерий, основные органы Размеры бактерий колеблются от 0,3–0,5 до 5-10 мкм.По форме клеток бактерии подразделяются на кокки, палочки и извитые.В бактериальной клетке различают:1) основные органеллы: (нуклеоид, цитоплазма, рибосомы, цитоплазматическая

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

5. Морфология бактерий, дополнительные органеллы Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий.

Из книги Клематисы автора Бескаравайная Маргарита Алексеевна

10. Морфология вирусов, типы взаимодействия вируса с клеткой Вирусы – микроорганизмы, составляющие царство Vira.Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).По форме вирионы могут быть: округлыми, палочковидными, в виде

Из книги Логика случая [О природе и происхождении биологической эволюции] автора Кунин Евгений Викторович

Глава 6. АДАПТИВНАЯ МОРФОЛОГИЯ ОРГАНИЗМОВ Среди приспособлений животных и растений к среде немаловажную роль играют морфологические адаптации, т. е. такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных

Из книги автора

Из книги автора

Инфекционная РНК и реконструкция вирусов Доказательства того, что РНК вирусов является генетическим материалом, предоставил нам все тот же ВТМ. Прежде всего ученым удалось изменить частицы ВТМ, устранив из их состава белковый компонент. В таком состоянии вирусы

Из книги автора

Угроза вирусов Одна из книг о вирусах очень метко названа «Вирусы - враги жизни». И не только у вирусов гриппа, но и у других вирусов, поражающих человека, «на совести» десятки тысяч, а может быть, и миллионы жизней.Небезопасной болезнью следует считать краснуху. Это

Из книги автора

Из книги автора

Морфология и биология клематисов Клематисы? многолетние, в подавляющем большинстве листопадные, реже вечнозелёные, растения.Корневая система. Взрослые клематисы имеют два основных типа корневой системы: стержнекорневую и мочковатую. При ограниченном поливе (на юге)

Из книги автора

Глава 10 Мир вирусов и его эволюция Пер. Г. ЯнусаВирусы были открыты как нечто совсем непримечательное, а именно необычная разновидность инфекционных агентов, а возможно, и особый род токсинов, вызывающих болезни растений, например табачную мозаику. Так как эти агенты

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

2. Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.

Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги).

Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным – натуральной оспы (около 350 нм).

Различают просто устроенные (например, вирус полиомиелита) и сложно устроенные (например, вирусы гриппа, кори) вирусы. У просто устроенных вирусов нуклеиновая кислота связана с белковой оболочкой, называемой капсидом (от лат. capsa – футляр). Капсид состоит из повторяющихся морфологических субъединиц – капсомеров. Нуклеиновая кислота и капсид, взаимодействуя друг с другом, образуют нуклеокапсид. У сложно устроенных вирусов капсид окружен дополнительной липопротеидной оболочкой – суперкапсидом (производное мембранных структур клетки-хозяина), имеющей «шипы». Для вирионов характерен спиральный, кубический и сложный тип симметрии капсида. Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида, кубический тип симметрии – образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту.


Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.В вирусологии используют следующие таксономические категории: семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus).

Однако названия родов и особенно подсемейств сформулированы не для всех вирусов. Вид вируса биноминального названия, как у бактерий, не получил.

В основу классификации вирусов положены следующие категории:

§ тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две),

§ особенности воспроизводства вирусного генома;

§ размер и морфология вирионов, количество капсомеров и тип симметрии;

§ наличие суперкапсида;

§ чувствительность к эфиру и дезоксихолату;

§ место размножения в клетке;

§ антигенные свойства и пр.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям – развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые неканонические вирусы – прионы – белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10.20x100.200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта.Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды – небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.

Читайте также: