Полисахарид - это что? Применение полисахаридов и их значение. Гомополисахариды Полисахарид крахмал состоит из остатков

Полисахариды являются высокомолекулярными соедине­ниями, содержащими сотни и тысячи остатков моносахаридов. Общим для строения полисахаридов является то, что остатки мо­носахаридов связываются за счет полуацетального гидроксила одной молекулы и спиртового гидроксила другой и т.д. Каждый остаток моносахарида связан с соседними остатками гликозидными связями.

Полигликозиды могут содержать разветвленные и неразвет­вленные цепи. Остатки моносахаридов, входящие в состав моле­кулы, могут быть одинаковыми или разными. Наибольшее значение из высших полисахаридов имеют крахмал, гликоген (животный крахмал), клетчатка (или целлюлоза). Все эти три полисахарида состоят из молекул глюкозы, по-разному соединен­ных друг с другом. Состав всех трех соединений можно выразить общей формулой: (С 6 Н 10 О 5) n

Крахмал

Крахмал относится к полисахаридам. Молекулярная масса этого вещества точно не установлена, но известно, что очень вели­ка (порядка 100000) и для разных образцов может быть различна. Поэтому формулу крахмала, как и других полисахаридов, изо­бражают в виде (С 6 Н 10 О 5) n . Для каждого полисахарида n имеет различные значения.

Физические свойства

Крахмал представляет собой безвкусный порошок, нераствори­мый в холодной воде. В горячей воде набухает, образуя клейстер.

Крахмал широко распространен в природе. Он является для различных растений запасным питательным материалом и содер­жится в них в виде крахмальных зерен. Наиболее богато крахма­лом зерно злаков: риса (до 86%), пшеницы (до 75%), кукурузы (до 72%), а также клубни картофеля (до 24%). В клубнях картофеля крахмальные зерна плавают в клеточном соке, а в злаках они плотно склеены белковым веществом клейковиной. Крахмал яв­ляется одним из продуктов фотосинтеза.

Получение

Из растений извлекают крахмал, разрушая клетки и отмывая его водой. В промышленном масштабе его получают главным об­разом из клубней картофеля (в виде картофельной муки), а также из кукурузы.

Химические свойства

1) При действии ферментов или при нагревании с кислотами (ионы водорода служат катализатором) крахмал, как и все сложные углеводы, подвергается гидролизу. При этом сначала образуется растворимый крахмал, затем менее сложные веще­ства - декстрины. Конечным продуктом гидролиза является глюкоза. Можно выразить суммарное уравнение реакции сле­дующим образом:

Происходит постепенное расщепление макромолекул. Гидро­лиз крахмала - его важное химическое свойство.

2) Крахмал не дает реакции «серебряного зеркала», но ее дают про­дукты его гидролиза. Макромолекулы крахмала состоят из мно­гих молекул циклической a-глюкозы. Процесс образования крахмала можно выразить так (реакция поликонденсации):

3) Характерной реакцией является взаимодействие крахмала с растворами иода. Если к охлажденному крахмальному клейс­теру добавить раствор иода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определе­нии крахмала в пищевых продуктах. Так, например, если каплю иода нанести на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

Применение

Крахмал является основным углеводом пищи человека, он в больших количествах содержится в хлебе, крупах, картофе­ле, овощах. В значительных количествах крахмал перерабаты­вается на декстрины, патоку, глюкозу, которые используются в кондитерской промышленности. Крахмал используется как клеящее средство, применяется для отделки тканей, накрахма­ливания белья. В медицине на основе крахмала готовят мази, присыпки и т.д.

Целлюлоза, или клетчатка

Целлюлоза - еще более распространенный углевод, чем крахмал. Из него состоят в основном стенки растительных кле­ток. В древесине содержится до 60%, в вате и фильтровальной бумаге - до 90% целлюлозы.

Физические свойства

Чистая целлюлоза - белое твердое вещество, нерастворимое в воде и в обычных органических растворителях, хорошо раство­римо в концентрированном аммиачном растворе гидроксида меди (II) (реактив Швейцера). Из этого раствора кислоты осаждают целлюлозу в виде волокон (гидратцеллюлоза). Клетчатка облада­ет довольно большой механической прочностью.

Состав и строение

Состав целлюлозы, так же как и крахмала, выражают форму­лой (С 6 Н 10 О 5) n . Значение n в некоторых видах целлюлозы дости­гает 10-12 тыс., а молекулярная масса доходит до нескольких миллионов. Молекулы ее имеют линейное (неразветвленное) строение, вследствие чего целлюлоза легко образует волокна. Мо­лекулы же крахмала имеют как линейную, так и разветвленную структуру. В этом основное отличие крахмала от целлюлозы.

Имеются различия и в строении этих веществ: макромолеку­лы крахмала состоят из остатков молекул a-глюкозы, а макромо­лекулы целлюлозы - из остатков b-глюкозы. Процесс образова­ния фрагмента макромолекулы целлюлозы можно изобразить схемой:

Химические свойства. Применение целлюлозы Небольшие различия в строении молекул обуславливают зна­чительные различия в свойствах полимеров: крахмал - продукт питания, целлюлоза для этой цели непригодна.

1) Целлюлоза не дает реакции «серебряного зеркала» (нет альде­гидной группы). Это позволяет рассматривать каждое звено С 6 Н 10 О 5 как остаток глюкозы, содержащий три гидроксильные группы. Последние в формуле целлюлозы часто выделяют:

За счет гидроксильных групп целлюлоза может образовывать простые и сложные эфиры.

Например, реакция образования сложного эфира с уксусной кислотой имеет вид:

[С 6 Н 7 O 2 (ОН) 3 ] n +3nСН 3 СООН®[С 6 Н 7 O 2 (ОСОСН 3) 3 ] n +3nН 2 O

При взаимодействии целлюлозы с концентрированной азотной кислотой в присутствии концентрированной серной кислоты в качестве водоотнимающего средства образуется сложный эфир - тринитрат целлюлозы:

Это - взрывчатое вещество, применяемое для изготовления порохов.

Таким образом, при обычной температуре целлюлоза взаимо­действует лишь с концентрированными кислотами.

2) Подобно крахмалу, при нагревании с разбавленными кисло­тами целлюлоза подвергается гидролизу с образованием глюкозы:

(С 6 Н 10 0 6) n +nН 2 O®nС б Н 12 O 6

Гидролиз целлюлозы, иначе называемый осахариванием, - очень важное свойство целлюлозы, он позволяет получить из дре­весных опилок и стружек целлюлозу, а сбраживанием послед­ней - этиловый спирт. Этиловый спирт, полученный из древеси­ны, называется гидролизным.

На гидролизных заводах из 1 т древесины получают до 200 л этилового спирта, что позволяет заменить 1,5 т картофеля или 0,7 т зерна.

Сырая глюкоза, полученная из древесины, может служить кормом для скота.

Это только отдельные примеры применения целлюлозы. Цел­люлоза в виде хлопка, льна или пеньки идет на изготовление тканей - хлопчатобумажных и льняных. Большие количества ее расходуются на производство бумаги. Дешевые сорта бумаги из­готовляют из древесины хвойных пород, лучшие сорта - из льня­ной и хлопчатобумажной макулатуры. Подвергая целлюлозу химической переработке, получают несколько видов искусствен­ного шелка, пластмассы, кинопленку, бездымный порох, лаки и многое другое.

Полисахариды получаются с помощью поликонденсации моносахаридов. Общая формула (С 6 Н 10 О 5) n . Простейшие представители - крахмал и целлюлоза.

Крахмал получается в процессе фотосинтеза и откладывается в корнях и семенах. Это белый порошок, нерастворимый в холодной воде, а в горячей образует коллоидный раствор .

Крахмал - природный полимер, образованный остатками α -глюкозы. Он модет быть в 2х формах: амилоза и амиопектин.

Амилоза - это линейный полимер, растворимый в воде, в котором остатки глюкозы связаны через 1 и 4 атомы углерода .

Линейная полимерная цепь свернута в спираль. Комплекс амилозы и йода дает синее окрашивание. Эта реакция является качественной для обнаружения йода.

Амилопектин нерастворим в воде и разветвлен:

Химические свойства полисахаридов.

При нагревании в кислой среде крахмал подвергается гидролизу. Конечным продуктом является глюкоза:

Эта реакция имеет промышленное значение.

Целлюлоза.

Целлюлоза является основным продуктом растительных клеток. Древесина состоит из целлюлозы, а хлопок и лен - это почти 100%-я целлюлоза. Это природный полимер:

Химические свойства целлюлозы.

1. Целлюлоза подвергается гидролизу в кислой среде при нагревании. Конечный продукт - глюкоза.

2. Характерна реакция образования сложных эфиров:

Тринитрат целлюлозы - взрывчатое вещество, на его основе делают порох.

Углеводы - органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2: 1).

Общая формула углево­дов - С n (Н 2 О) m , т. е. они как бы состоят из углерода и во­ды, отсюда и название клас­са, которое имеет историче­ские корни. Оно появилось на основе анализа первых известных углеводов. В даль­нейшем было установлено, что имеются углеводы, в мо­лекулах которых не соблюда­ется указанное соотношение (2: 1), например дезоксирибоза - С 5 Н 10 О 4 . Извест­ны также органические соединения, состав кото­рых соответствует приведенной общей формуле, но которые не принадлежат к классу углеводов. К ним относятся, например, формальдегид СН 2 О и уксус­ная кислота СН 3 СООН.

Однако название «углеводы» укоренилось и в настоящее время является общепризнанным для этих веществ.

Углеводы по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды - углеводы, которые не гидро­лизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода, моноса­хариды подразделяются на триозы (молекулы ко­торых содержат три углеродных атома), тетрозы (четыре углеродных атома), пентозы (пять), гексозы (шесть) и т. д.

В природе моносахариды представлены преиму­щественно пентозами и гексозами .

К пентозам относятся, например, рибоза - С 5 Н 10 О 5 и дезоксирибоза (рибоза, у которой «от­няли» атом кислорода) - С 5 Н 10 О 4 . Они входят в состав РНК и ДНК и опре­деляют первую часть назва­ний нуклеиновых кислот.

К гексозам , имеющим об­щую молекулярную формулу С 6 Н 12 О 6 , относятся, например, глюкоза, фруктоза, галактоза.


Дисахариды - углево­ды, которые гидролизуются с образованием двух моле­кул моносахаридов, напри­мер гексоз. Общую формулу подавляющего большинства дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся формулы молекулу воды - С 12 Н 22 О 11 . Соответствен­но можно записать и общее уравнение гидролиза:

К дисахаридам относятся:

1. Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулу глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия - свекловичный или трост­никовый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, ку­курузе и т. д.

2. Мальтоза (солодовый сахар), которая гидро­лизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в соло­де, - пророщенных, высушенных и размолотых зернах ячменя.

3. Лактоза (молочный сахар), которая гидроли­зуется с образованием молекул глюкозы и галак­тозы. Она содержится в молоке млекопитающих (до 4-6 %), обладает невысокой сладостью и ис­пользуется как наполнитель в драже и аптечных таблетках.

Сладкий вкус разных моно- и дисахаридов раз­личен. Так, самый сладкий моносахарид - фрук­тоза - в 1,5 раза слаще глюкозы, которую при­нимают за эталон. Сахароза (дисахарид), в свою очередь, в 2 раза слаще глюкозы и в 4-5 раз - лактозы, которая почти безвкусна.

Полисахариды - крахмал, гликоген, декстри­ны, целлюлоза и т. д. - углеводы, которые гидро­лизуются с образованием множества молекул моно­сахаридов, чаще всего глюкозы.

Чтобы вывести формулу полисахаридов, нуж­но от молекулы глюкозы «отнять» молекулу во­ды и записать выражение с индексом n: (С 6 Н 10 О 5) n , ведь именно за счет отщепления молекул воды в природе образуются ди- и полисахариды.

Роль углеводов в природе и их значение для жизни человека чрезвычайно велики. Образуясь в клетках растений в результате фотосинтеза, они выступают источником энергии для клеток живот­ных. В первую очередь это относится к глюкозе.

Многие углеводы (крахмал, гликоген, сахаро­за) выполняют запасающую функцию, роль резерва питательных веществ .

Кислоты РНК и ДНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследствен­ной информации.

Целлюлоза - строительный материал расти­тельных клеток - играет роль каркаса для оболо­чек этих клеток. Другой полисахарид - хитин - выполняет аналогичную роль в клетках некоторых животных: образует наружный скелет членистоно­гих (ракообразных), насекомых, паукообразных.

Углеводы служат в конечном итоге источником нашего питания: мы потребляем зерно, содержа­щее крахмал, или скармливаем его животным, в организме которых крахмал превращается в бел­ки и жиры. Самая гигиеничная одежда изготовле­на из целлюлозы или продуктов на ее основе: хлоп­ка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлю­лозы, образующей древесину.

В основе производства фото- и кинопленки - все та же целлюлоза. Книги, газеты, письма, денежные банкно­ты - все это продукция цел­люлозно-бумажной промышленности. Значит, углеводы обеспечивают нас всем необходимым для жизни: пищей, одеждой, кровом.

Кроме того, углеводы участвуют в построении сложных белков, ферментов, гормонов. Углевода­ми являются и такие жизненно необходимые веще­ства, как гепарин (он играет важнейшую роль - предотвращает свертывание крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промыш­ленности - вспомните знаменитый торт «Птичье молоко»).

Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разуме­ется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов явля­ется процесс фотосинтеза , протекающий в клетках живых растений и приводящий к синтезу угле­водов из воды и углекислого газа. Именно при этом превращении образуется кислород, без ко­торого жизнь на нашей планете была бы невозможна:

Моносахариды. Глюкоза

Глюкоза и фруктоза - твердые бесцветные кристаллические вещества. Глюкоза содержится в соке винограда (отсюда название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных посто­янно содержится около 0,1 % глюкозы (80-120 мг в 100 мл крови). Большая ее часть (около 70 %) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов - углекислого газа и воды (процесс гли­колиза):

Энергия, выделяемая при гликолизе, в значи­тельной степени обеспечивает энергетические по­требности живых организмов.

Превышение содержания глюкозы в крови уровня 180 мг в 100 мл крови свидетельствует о нарушении углеводного обмена и развитии опас­ного заболевания - сахарного диабета.

Строение молекулы глюкозы

О строении молекулы глюкозы можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфи­ры, содержащие от 1 до 5 остатков кислоты. Ес­ли раствор глюкозы прилить к свежеполученно­му гидроксиду меди (II), то осадок растворяется и образуется ярко-синий раствор соединения меди, т. е. происходит качественная реакция на много­атомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полу­ченный раствор, то вновь выпадет осадок, но уже красноватого цвета, т. е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы нагреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зер­кала». Следовательно, глюкоза является одновре­менно многоатомным спиртом и альдегидом - алъдегидоспиртом. Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в моле­куле C 6 H 12 O 6 шесть. Один атом входит в состав альдегидной группы :

Остальные пять атомов связываются с пятью гидроксигруппами.

И наконец, атомы водорода в молекуле распре­делим с учетом того, что углерод четырехвалентен:

Однако установлено, что в растворе глюко­зы помимо линейных (альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы в цикли­ческую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ-связей, расположенных под углом 109° 28′. При этом альдегидная группа (1-й атом углерода) мо­жет приблизиться к гидроксильной группе пятого атома углерода. В первой под влиянием гидрокси- группы разрывается π-связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы замыкает цикл:

В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи ато­мов, но и их пространственное расположение. В ре­зультате взаимодействия первого и пятого атомов углерода появляется новая гидроксигруппа у пер­вого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а по­тому возможны две циклические формы глюкозы:

а) α-форма глюкозы - гидроксильные группы при первом и втором атомах углерода располо­жены по одну сторону кольца молекулы;

б) β-форма глюкозы - гидроксильные группы на­ходятся по разные стороны кольца молекулы:

В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы - циклическая α-форма, линейная (альдегидная) форма и циклическая β-форма:

В установившемся динамическом равновесии преобладает β-форма (около 63 %), так как она энер­гетически предпочтительнее - у нее OH-группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37 %) OH-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически ме­нее устойчива, чем β-форма. Доля же линейной фор­мы в равновесии очень мала (всего около 0,0026 %).

Динамическое равновесие можно сместить. На­пример, при действии на глюкозу аммиачного рас­твора оксида серебра количество ее линейной (аль­дегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.

Изомером альдегидоспирта глюкозы является кетоноспирт - фруктоза :

Химические свойства глюкозы

Химические свойства глюкозы, как и любого другого органического вещества, определяются ее строением. Глюкоза обладает двойственной функ­цией, являясь и альдегидом , и многоатомным спиртом , поэтому для нее характерны свойства и много­атомных спиртов, и альдегидов.

Реакции глюкозы как многоатомного спирта.

Глюкоза дает качественную реакцию много­атомных спиртов (вспомните глицерин) со свеже­полученным гидроксидом меди (II), образуя ярко­-синий раствор соединения меди (II).

Глюкоза, подобно спиртам, может образовывать сложные эфиры.

Реакции глюкозы как альдегида

1. Окисление альдегидной группы . Глюкоза как альдегид способна окисляться в соответствующую (глюконовую) кислоту и давать качественные ре­акции альдегидов.

Реакция «серебряного зеркала»:

Реакция со свежеполученным Cu(OH) 2 при на­гревании:

Восстановление альдегидной группы . Глю­коза может восстанавливаться в соответствующий спирт (сорбит):

Реакции брожения

Эти реакции протекают под действием особых биологических катализаторов белковой приро­ды - ферментов.

1. Спиртовое брожение:

издавна применяемое человеком для получения этилового спирта и алкогольных напитков.

2. Молочнокислое брожение:

которое составляет основу жизнедеятельности мо­лочнокислых бактерий и происходит при скиса­нии молока, квашении капусты и огурцов, силосо­вании зеленых кормов.\

Химические свойства глюкозы - конспект

Полисахариды. Крахмал и целлюлоза.

Крахмал - белый аморфный порошок, не рас­творяется в холодной воде. В горячей воде он раз­бухает и образует коллоидный раствор - крах­мальный клейстер.

Крахмал содержится в цитоплазме раститель­ных клеток в виде зерен запасного питательного вещества. В картофельных клубнях содержится около 20 % крахмала, в пшеничных и кукуруз­ных зернах - около 70 %, а в рисовых - почти 80 %.

Целлюлоза (от лат. cellula - клетка), выделен­ная из природных материалов (например, вата или фильтровальная бумага), представляет собой твер­дое волокнистое вещество, нерастворимое в воде.

Оба полисахарида имеют растительное проис­хождение, однако играют в клетке растений разную роль: целлюлоза - строительную, конструкционную функцию, а крахмал - запасающую. Поэтому цел­люлоза является обязательным элементом клеточ­ной оболочки растений. Волокна хлопка содержат до 95 % целлюлозы, волокна льна и конопли - до 80 %, а в древесине ее содержится около 50 %.

Строение крахмала и целлюлозы

Состав этих полисахаридов можно выразить общей формулой (C 6 H 10 O 5) n . Число повторяю­щихся звеньев в макромолекуле крахмала может колебаться от нескольких сотен до нескольких тысяч. Целлюлоза же отли­чается значительно большим числом звеньев и, следова­тельно, молекулярной мас­сой, которая достигает не­скольких миллионов.

Различаются углеводы не только молекулярной мас­сой, но и структурой. Для крахмала характерны два вида структур макромолекул: линейная и развет­вленная. Линейную структуру имеют более мел­кие макромолекулы той части крахмала, которую называют амилозой, а разветвленную структуру имеют молекулы другой составной части крахма­ла - амилопектина.

В крахмале на долю амилозы приходится 10- 20 %, а на долю амилопектина - 80-90 %. Ами­лоза крахмала растворяется в горячей воде, а ами­лопектин только набухает.

Структурные звенья крахмала и целлюлозы по­строены по-разному. Если звено крахмала вклю­чает остатки α-глюкозы , то целлюлоза - остатки β-глюкозы , ориентированные в природные волок­на:

Химические свойства полисахаридов

1. Образование глюкозы. Крахмал и целлюлоза подвергаются гидролизу с образованием глюкозы в присутствии минеральных кислот, например сер­ной:

В пищеварительном тракте животных крахмал подвергается сложному ступенчатому гидролизу:

Организм человека не приспособлен к перева­риванию целлюлозы, так как не имеет ферментов, необходимых для разрыва связей между остатка­ми β-глюкозы в макромолекуле целлюлозы.

Лишь у термитов и жвачных животных (на­пример, коров) в пищеварительной системе живут микроорганизмы, вырабатывающие необходимые для этого ферменты.

2. Образование сложных эфиров . Крахмал мо­жет образовывать эфиры за счет гидроксигрупп, однако эти эфиры не нашли практического при­менения.

Каждое звено целлюлозы содержит три свобод­ных спиртовых гидроксигруппы. Поэтому общую формулу целлюлозы можно записать таким обра­зом:

За счет этих спиртовых гидроксигрупп целлю­лоза и может образовывать сложные эфиры, которые широко применяются.

При обработке целлюлозы смесью азотной и сер­ной кислот получают в зависимости от условий мо­но-, ди- и тринитроцеллюлозу:

Применение углеводов

Смесь моно- и динитроцеллюлозы называют коллоксилином . Раствор коллоксилина в смеси спирта и диэтилового эфира - коллодий - приме­няют в медицине для заклеивания небольших ран и для приклеивания повязок к коже.

При высыхании раствора коллоксилина и камфа­ры в спирте получается целлулоид - одна из пласт­масс, которая впервые стала широко использовать­ся в повседневной жизни человека (из нее делают фото- и кинопленку, а также различные предметы широкого потребления). Растворы коллоксилина в органических растворителях применяются в каче­стве нитролаков. А при добавлении к ним красите­лей получаются прочные и эстетичные нитрокраски, широко используемые в быту и технике.

Как и другие органические вещества, содержа­щие в составе молекул нитрогруппы, все виды ни­троцеллюлозы огнеопасны. Особенно опасна в этом отношении тринитроцеллюлоза - сильнейшее взрывчатое вещество. Под названием «пирокси­лин» она широко применяется для производства оружейных снарядов и проведения взрывных ра­бот, а также для получения бездымного пороха.

С уксусной кислотой (в промышленности для этих целей используют более мощное этерифицирующее вещество - уксусный ангидрид) получают аналогичные (ди- и три-) сложные эфиры целлюло­зы и уксусной кислоты, которые называются аце­тилцеллюлозой :

Ацетилцеллюлозу используют для получения лаков и красок, она служит также сырьем для из­готовления искусственного шелка. Для этого ее рас­творяют в ацетоне, а затем этот раствор продавлива­ют через тонкие отверстия фильер (металлических колпачков с многочисленными отверстиями). Выте­кающие струйки раствора обдувают теплым возду­хом. При этом ацетон быстро испаряется, а высыха­ющая ацетилцеллюлоза образует тонкие блестящие нити, которые идут на изготовление пряжи.

Крахмал , в отличие от целлюлозы, дает синее окрашивание при взаимодействии с йодом. Эта ре­акция является качественной на крахмал или йод в зависимости от того, наличие какого вещества требуется доказать.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Полисахариды. Крахмал, Целлюлоза.

На этой странице мы рассмотрим несахароподобные полисахариды .


Полисахариды - общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов .


Важнейшие представители несахароподобных полисахаридов крахмал и целлюлоза (клетчатка).


Эти углеводы во многом отличаются от моно- и олигосахаридов . Они не имеют сладкого вкуса, большинство из них не растворимо в воде. По этой причине их называют несахароподобными (в отличие от сахароподобных олигосахаридов, которые также относятся к полисахаридам).


Олигосахариды имеют знаительно меньший размер молекул и свойства, близкие к моносахаридам.


Несахароподобные полисахариды представляют собой высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов , затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов .

Химическое строение полисахаридов.

По химической природе полисахариды стоит рассматривать как полигликозиды (полиацетали). Каждое звено моносахарида связано гликозидными связями с предыдущим и последующим звеньями.


При этом для связи с последующим звеном предоставляется полуацетальная (гликозидная) гидроксильная группа , а с предыдущим – спиртовая гидроксильная группа .

На конце цепи находится остаток восстанавливающегося моносахарида. Но поскольку доля концевого остатка относительно всей макромолекулы весьма невелика, то полисахариды проявляют очень слабые восстановительные свойства .


Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и высокую устойчивость в щелочной средах.


Полисахариды имеют большую молекулярную массу. Им присущ характерный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул.


Наряду с первичной структурой , т.е. определённой последовательностью мономерных остатков, важную роль играет вторичная структура , определяемая пространственным расположением молекулярной цепи.

Классификация полисахаридов.

Полисахариды можно классифицировать по разным признакам.


Полисахаридные цепи могут быть:

  • разветвлёнными или
  • неразветвлёнными (линейными).

Также, различают:

  • гомополисахаридами - полисахариды, состоящие из остатков одного моносахарида,
  • гетерополисахариды - полисахариды, состоящие из остатков разных моносахаридов.

Наиболее изучены гомополисахариды .


Их можно разделить по их происхождению:

  • гомополисахариды растительного происхождения
  • - Крахмалл,
    - Целюлоза,
    - Пектиновые вещества и т.д.
  • гомополисахариды животного происхождения
  • - Гликоген,
    - Хитин и т.д.
  • гомополисахариды бактериального происхождения
  • - Гекстраны.

Гетерополисахариды , к числу которых относятся многие животные и бактериальные полисахариды, изучены меньше, однако они играют важную биологическую роль.


Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы.


Для полисахаридов используется общее название гликаны .


Гликаны могут быть:

  • гексозанами (состоят из гексоз),
  • пентозанами , (состоят из пентоз).

В зависимости от природы моносахарида различают:

  • глюканы (в основе – моносахарид глюкоза ),
  • маннаны (в основе – моносахарид манноза ),
  • галактаны (в основе – моносахарид галактоза ) и т.п.

Крахмал

Крахмал (С 6 Н 10 О 5)n – белый (под микроскопом зернисый) порошок, нерастворимый в холодной воде. В горячей воде крахмал набухает, образуя коллоидный раствор (крахмальный клейстер). С раствором йода даёт синее окрашивание (характерная реакция).


Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.

Химическое строение крахмала

Крахмал представляет собой смесь двух полисахаридов, построенных из глюкозы (D-глюкопиранозы): амилозы (10-20%) и амилопектина (80-90%).


Дисахаридным фрагментом амилозы является мальтоза . В амилозе D-глюкопиранозные остатки связаны альфа(1-4) гликозидными связями.


По данным рентгеноструктурного анализа макромолекула амилозы свёрнута в спираль . На каждый виток спирали приходится 6 моносахаридных звеньев.


Амилопектин в отличие от амилозы имеет разветвлённое строение .

В цепи D-глюкопиранозные остатки связаны альфа(1-4)-гликозидными связями, а в точках разветвления - бета(1-6)-гликозидными связями. Между точками разветвления располагается 20-25 глюкозидных остатков.


Цепь амилозы включает от 200 до 1000 глюкозных остатков, молекулярная масса
160 000. Молекулярная масса амилопектина достигает 1-6 млн.

Гидролитическое расщепление крахмала.

В пищеварительном тракте человека и животных крахмал подвергается гидролизу и превращается в глюкозу , которая усваивается организмом.


В технике превращение крахмала в глюкозу (процесс осахаривания) осуществляется путём кипячения его в течение нескольких часов с разбавленной серной кислотой. Впоследствии серную кислоту удаляют. Получается густая сладкая масса, так называемая крахмальная патока , содержащая, кроме глюкозы, значительное количество других продуктов гидролиза крахмала. Патока применяется для приготовления кондитерских изделий и различных технических целей.


Если требуется получить чистую глюкозу , то кипячение крахмала ведут дольше. Этим достигается более высокая степень гидролиза крахмала .


При нагревании сухого крахмала до 200-500 град. С происходит частичное разложение его и получается смесь менее сложных, чем крахмал полисахаридов, называемых декстринами .


Разложением крахмала на декстрины объясняется образование блестящей корки на печёном хлебе. Крахмал муки, превращённый в декстрины, легче усваивается вследствие большей растворимости.

Гликоген

В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала .


Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц).

Химическое строение гликогена.

По строению гликоген подобен амилопектину (структурную формулу см. выше). Но молекулы гликогена значительно больше молекул амилопектина и имеют более разветвленную структуру. Обычно между точками разветвления содержится 10-12 глюкозных звеньев, а иногда даже 6 .


Сильное разветвление способствует выполнению гликогеном энергетической функции , так как только при наличии большого числа концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы .


Молекулярная масса у гликогена необычайно велика. Измерения показали, что она равна 100 млн . Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остаётся внутри клетки, пока не возникнет потребность в энергии.

Функции гликогена в метаболизме.

Гликоген является основной формой хранения глюкозы в животных клетках.


Гликоген образует энергетический резерв , который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы .


Гликогеновый запас , однако, не столь ёмок в калориях на грамм, как запас триглицеридов (жиров ). Он имеет скорее локальное значение . Только гликоген, запасённый в клетках печени (гепатоциты) может быть переработан в глюкозу для питания всего организма.


Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы.


Аналогично гликогену в животных организмах, в растениях такую же роль резервного полисахарида выполняет амилопектин , имеющий менее разветвлённое строение. Меньшая разветвлённость связана с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза (клетчатка)

– наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений .


Наиболее чистая природная целлюлоза хлопковое волокно – содержит 85-90% целлюлозы . В древесине хвойных деревьев целлюлозы содержится около 50% .

Химическое строение целлюлозы

Структурной единицей целлюлозы является D-глюкопираноза , звенья которой связаны бета(1-4)-гликозидными связями.


Биозный фрагмент целлюлозы представляет собой целлобиозу . Макромолекулярная цепь не имеет разветвлений, в ней содержится от 2500 до 12 000 глюкозных остатков , что соответствует молекулярной массе от 400 000 до 1-2 млн .


Бета-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюлозы имеет строго линейное строение . Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.


Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений .


Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта , но она является необходимым для питания баластным веществом .

Использование целлюлозы

Значение целлюлозы очень велико. Достаточно указать, что огромное количество хлопкового волокна идёт для выработки хлопчатобумажных тканей.


Из целлюлозы получают бумагу и картон, а путём химической переработки – целый ряд разнообразных продуктов: искусственное волокно, пластические массы, лаки, этиловый спирт.


Большое практическое значение имеют эфирные производные целлюлозы : ацетаты (искусственный шёлк), ксантогенты (вискозное волокно, целлофан), нитраты (взрывчатые вещества, коллоксилин) и др.

Ответами к заданиям 1–21 являются последовательность цифр, число или слово (словосочетание).

1

Рассмотрите предложенную схему. Запишите в ответе пропущенный термин, обозначенный на схеме знаком вопроса.

2

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.

На каких уровнях организации живого изучают значение фотосинтеза в природе?

1. биосферном

2. клеточном

3. биогеоценотическом

4. молекулярном

5. тканево-органном

3

Сколько нуклеотидов составляют антикодон тРНК?

Ответ: ______

4

Все приведенные ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1. осуществляют гомеостаз

2. переносят наследственную информацию из ядра к рибосоме

3. участвуют в биосинтезе белка

4. входят в состав клеточной мембраны

5. транспортируют аминокислоты

5

Установите соответствие между процессом, протекающим в клетке, и органоидом, в котором он происходит: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А. восстановление углекислого газа до глюкозы

Б. синтез АТФ в процессе дыхания

В. первичный синтез органических веществ

Г. превращение световой энергии в химическую

Д. расщепление органических веществ до углекислого газа и воды

ОРГАНОИД

1. митохондрия

2. хлоропласт

6

Какое соотношение фенотипов получится при скрещивании двух гетерозигот при полном доминировании генов? Ответ запишите в виде последовательности цифр в порядке их убывания.

7

Ниже приведен перечень терминов. Все они, кроме двух, используются для описания генетических процессов и явлений. Найдите два термина, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.

1. Х-хромосома

2. консумент

3. дивергенция

4. гетерозигота

5. половая хромосома

8

Установите соответствие между особенностью полового и бесполого размножения: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКА

А. формирует новые сочетания генов

Б. формирует комбинативную изменчивость

В. образует потомство, идентичное материнскому

Г. происходит без гаметогенеза

Д. обусловлено митозом

РАЗМНОЖЕНИЕ

1. бесполое

2. половое

9

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие признаки характерны для растений класса Двудольные?

1. сетчатое жилкование листьев

2. корневая система мочковатая

3. корневая система стержневая

4. дуговое жилкование листьев

5. две семядоли в семени

6. параллельное жилкование листьев

10

Установите соответствие между признаком животных и классом, для которого этот признак характерен: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А. наличие шейного позвонка

Б. отсутствие ребер

В. непрямое развитие

Г. наличие рычажных конечностей

Д. двухкамерное сердце

Е. отсутствие легких

2. Земноводные

11

Установите, в какой последовательности расположены систематические группы растений, начиная с наибольшей. Запишите соответствующую последовательность цифр.

2. бобовые

3. клевер красный

4. покрытосеменные

5. двудольные

12

При возбуждении симпатической нервной системы в отличие от возбуждения парасимпатической нервной системы

1. расширяются артерии

2. повышается артериальное давление

3. усиливается перистальтика кишечника

4. сужается зрачок

5. увеличивается количество сахара в крови

6. учащаются сокращения сердца

13

Установите соответствие между защитным свойством организма человека и видом иммунитета: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ЗАЩИТНЫЕ СВОЙСТВА

А. наличие антител в плазме крови, полученных по наследству

Б. получение антител с лечебной сывороткой

В. образование антител в крови в результате вакцинации

Г. наличие в крови сходных белков - антител у всех особей одного вида

ВИД ИММУНИТЕТА

1. активный

2. пассивный

3. врожденный

14

Установите последовательность расположения органов пищеварительной системы, начиная с толстой кишки. Запишите соответствующую последовательность цифр.

2. ротовая полость

3. толстая кишка

4. тонкая кишка

5. желудок

6. пищевод

15

Выберите из текста три предложения, которые описывают пути макроэволюции органического мира. Запишите в таблицу цифры, под которыми они указаны.

16

Установите соответствие между признаком большого прудовика и критерием вида, для которого он характерен: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАК БОЛЬШОГО ПРУДОВИКА

А. органы чувств - одна пара щупалец

Б. коричневый цвет раковины

В. населяет пресные водоемы

Г. питается мягкими тканями растений

Д. раковина спирально закрученная

КРИТЕРИЙ ВИДА

1. морфологический

2. экологический

17

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие антропогенные факторы оказывают влияние на численность популяции ландыша майского в лесном сообществе?

1. вырубка деревьев

2. увеличение затененности

3. недостаток влаги в летний период

4. сбор дикорастущих растений

5. низкая температура воздуха зимой

6. вытаптывание почвы

18

Установите соответствие между причиной видообразования и его способом: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А. расширение ареала исходного вида

Б. стабильность ареала исходного вида

В. разделение ареала вида различными преградами

Г. многообразие изменчивости особей внутри ареала

Д. многообразие местообитаний в пределах стабильного ареала

СПОСОБЫ ВИДООБРАЗОВАНИЯ

1. географическое

2. экологическое

19

Установите последовательность расположения экосистем с учетом повышения их стабильности. Запишите соответствующую последовательность цифр.

1. еловый лес

2. смешанный лес

3. березовая роща

4. дубрава

20

Проанализируйте таблицу. Заполните пустые ячейки таблицы, используя понятия и термины, приведенные в списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.

Список терминов:

1. мембраны тилакоидов

2. световая фаза

3. фиксация неорганического углерода

4. фотосинтез воды

5. темновая фаза

6. цитоплазма клетки

21

Изучите график колебания численности зайцев в зависимости от численности хищников. Выберите утверждения, которые можно сформулировать на основании анализа предложенного графика. Запишите в ответе номера выбранных утверждений.

1. Колебания численности вида - популяционные волны, или «волны жизни».

2. Одна из причин популяционных волн - обильная кормовая база.

3. Возрастание численности хищников опережает возрастание численности жертв.

Часть 2.

Запишите сначала номер задания (22, 23 и т. д.), затем подробное решение. Ответы записывайте чётко и разборчиво.

Малярия – заболевание человека, в результате которого развивается малокровие. Кем оно вызывается? Объясните причину малокровия.

Показать ответ

Малярия вызывается малярийным плазмодием. Переносчик плазмодия – комар. Заражённый комар кусает человека, возбудитель малярии проникает в кровь человека и начинает активно размножаться в эритроцитах, разрушая их. Снижение содержания эритроцитов в крови и есть одна из причин малокровия.

Какой орган человека обозначен на рисунке цифрой 4? Какое строение он имеет? Объясните выполняемые им функции, исходя из его строения.

Показать ответ

Цифрой 4 на рисунке обозначена трахея. Это трубка, по которой при дыхании идет воздух. Она окружена хрящевыми полукольцами, которые поддерживают форму трахеи, но при этом не пережимают пищевод, прилежащий к трахее сзади.

Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны, исправьте их.

1. Полисахарид целлюлоза выполняет в клетке растения резервную, запасающую функцию. 2. Накапливаясь в клетке, углеводы выполняют главным образом регуляторную функцию. 3. У членистоногих полисахарид хитин формирует покровы тела. 4. У растений клеточные стенки образованы полисахаридом крахмалом. 5. Полисахариды обладают гидрофобностью. 6. По функциональным свойствам полисахариды подразделяются на три группы: структурные, водорастворимые и резервные.

Читайте также: