Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала

Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–< х < ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

21 Правила нахожд. производ. суммы

Правило 1. Если функции у = f(х) и у = g(х) имеют, производную в точке х, то и их сумма имеет производную в точке х, причем производная суммы равна сумме производных:
(f(х) + 8(х))" =f (х)+ (х).
На практике это правило формулируют короче: производная суммы равна сумме производных.
Например,
Правило 2. Если функция у = f(х) имеет, производную в точке х, то и функция у = кf(х) имеет производную в точке х, причем:

На практике это правило формулируют короче: постоянный множитель можно вынести за знак производной. Например,

Правило 3. Если функции у=f(х) и у =g(х) имеют производную в точке х, то и их произведение имеет производную в точке х, причем:

На практике это правило формулируют так: производная произведения двух функций равна сумме двух слагаемых. Первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции.
Например:
Правило 4. Если функции у = f(x) и у=g(х) имеют производную в то и частное имеет производную в точке х, причем:

Таблица сложных производных


22 Диффир. функц. в точке

Функция y =f (x ) называется дифференцируемой в точке x 0, если ее приращение Δy (x 0,Δx ) может быть представлено в виде

Δy (x 0,Δx )=A Δx +o x ).

Главная линейная часть A Δx приращения Δy называется дифференциалом этой функции в точке x 0, соответствующим приращению Δx , и обозначается символом dy (x 0,Δx ).

Для того, чтобы функция y =f (x ) была дифференцируема в точке x 0, необходимо и достаточно, чтобы существовала производная f ′(x 0), при этом справедливо равенство A =f ′(x 0).

Выражение для дифференциала имеет вид

dy (x 0,dx )=f ′(x 0)dx ,

где dx x .

23 Производ. Слож. Функц

Производная сложной функции. Производная функции, заданной параметрически

Пусть y – сложная функция x , т.е. y = f (u ), u = g (x ), или

Если g (x ) и f (u ) – дифференцируемые функции своих аргументов соответственно в точках x и u = g (x ), то сложная функция также дифференцируема в точке x и находится по формуле

Производная функции заданной параметрически.

24 Произв и диффер. Высш.порядк

Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,

Дифференциалом порядка n , где n > 1 , от функции в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n - 1) , то есть

Для функции, зависящей от одной переменной второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n -го порядка от функции :

25 Теоремы Ферма, Ролля, Лангража

v Теорема Ферма: Пусть функция определена на и достигает своего наибольшего и наименьшего значения (M и m ) в некоторой из . Если существует производная в , то она обязательно равна 0.

Доказательство: Существует . Возможны два случая:

1) , => , => .

2) , => , => .

Из 1) и 2) следует, что

v Теорема Ролля (о корнях производной): Пусть функция непрерывна на и дифференцируема на и на концах отрезка принимает одинаковые значения: . Тогда существует хотя бы одна точка из , производная в которой .

v Доказательство: Непрерывная достигает на M и m . Тогда возможны два случая:

2) наибольшее значение достигается внутри интервала по теореме Ферма.

v Теорема Лангража (о конечных приращениях): Пусть функция непрерывна на и дифференцируема на . Тогда существует хотя бы одна из , для которой выполняется следующее равенство: .

Доказательство: Введем функцию . (непрерывная на и дифференцируемая на ).

Функция удовлетворяет Теореме Ролля существует , для которой: , , , .

· функция называется стро́го возраста́ющей на , если

· функция называется убыва́ющей на , если

· функция называется стро́го убыва́ющей на , если

Задача о скорости движущейся точки

Пусть – закон прямолинейного движения материальной точки. Обозначим через путь, пройденный точкой за время , а через путь, пройденный за время . Тогда за время точка пройдет путь , равный: . Отношение называется средней скоростью точки за время от до . Чем меньше , т.е. чем короче промежуток времени от до , тем лучше средняя скорость характеризует движение точки в момент времени . Поэтому естественно ввести понятие скорости в данный момент , определив ее как предел средней скорости за промежуток от до , когда :

Величина называется мгновенной скоростью точки в данный момент .

Задача о касательной к данной кривой

Пусть на плоскости задана непрерывная кривая уравнением . Требуется провести невертикальную касательную к данной кривой в точке . Так как точка касания дана, то для решения задачи требуется найти угловой коэффициент касательной. Из геометрии известно, что , где – угол наклона касательной к положительному направлению оси (см. рис.). Через точки и проведем секущую , где – угол, образованный секущей с положительным направлением оси . Из рисунка видно, что , где . Угловой коэффициент касательной к данной кривой в точке может быть найден на основании следующего определения.

Касательной к кривой в точке называется предельное положение секущей , когда точка стремится к точке . Отсюда следует, что .

Определение производной

Математическая операция, требуемая для решения рассмотренных выше задач, одна и та же. Выясним аналитическую сущность этой операции, отвлекаясь от вызвавших ее конкретных вопросов.



Пусть функция определена на некотором промежутке. Возьмем значение из этого промежутка. Придадим какое-нибудь приращение (положительное или отрицательное). Этому новому значению аргумента соответствует и новое значение функции , где .

Составим отношение , оно является функцией от .

Производной функции по переменной в точке называется предел отношения приращения функции в этой точке к вызвавшему его приращению аргумента , когда произвольным образом:

Замечание. Считается, что производная функции в точке существует, если предел в правой части формулы существует и конечен и не зависит от того, как приращение переменной стремится к 0 (слева или справа).

Процесс нахождения производной функции называется ее дифференцированием.

Нахождение производных некоторых функций по определению

а) Производная постоянной.

Пусть , где – постоянная, т.к. значения этой функции при всех одинаковы, то ее приращение равно нулю и, следовательно,

.

Итак, производная постоянной равна нулю, т.е. .

б) Производная функции .

Составим приращение функции:

.

При нахождении производной использовали свойство предела произведения функций, первый замечательный предел и непрерывность функции .

Таким образом, .

Связь между дифференцируемостью функции и ее непрерывностью

Функция, имеющая производную в точке , называется дифференцируемой в этой точке. Функция, имеющая производную во всех точках некоторого промежутка, называется дифференцируемой на этом промежутке.

Теорема. Если функция дифференцируема в точке , то она непрерывна в этой точке.

Доказательство. Придадим аргументу произвольное приращение . Тогда функция получит приращение . Запишем равенство и перейдем к пределу в левой и правой частях при :

Поскольку у непрерывной функции бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то теорему можно считать доказанной.

Замечание. Обратное утверждение не имеет места, т.е. из непрерывности функции в точке, вообще говоря, не следует дифференцируемость в этой точке. Например, функция непрерывна при всех , но она не дифференцируема в точке . Действительно:

Предел бесконечен, значит, функция не дифференцируема в точке .

Таблица производных элементарных функций

Замечание. Напомним свойства степеней и корней, используемые при дифференцировании функций:

Приведем примеры нахождения производных.

1) .

2)

Производная сложной функции

Пусть . Тогда функция будет сложной функцией от x .

Если функция дифференцируема в точке x , а функция дифференцируема в точке u , то тоже дифференцируема в точке x , причем

.

1.

Полагаем , тогда . Следовательно

При достаточном навыке промежуточную переменную u не пишут, вводя ее лишь мысленно.

2.

Дифференциал

К графику непрерывной функции в точке проведем касательную MT , обозначив через j ее угол наклона к положительному направлению оси Ох. Так как , то из треугольника MEF следует, что

Введем обозначение

.

Это выражение называется дифференциалом функции . Итак

Замечая, что , т.е. что дифференциал независимой переменной равен ее приращению, получим

Таким образом, дифференциал функции равен произведению ее производной на дифференциал (или приращение) независимой переменной.

Из последней формулы следует, что , т.е. производная функции равна отношению дифференциала этой функции к дифференциалу аргумента.

Дифференциал функции dy геометрически представляет собой приращение ординаты касательной, соответствующее приращению аргумента Dх .

Из рисунка видно, что при достаточно малом Dх по абсолютной величине можно взять приращение функции приближенно равным ее дифференциалу, т.е.

.

Рассмотрим сложную функцию , где , причем дифференцируема по u , а – по х . По правилу дифференцирования сложной функции

Умножим это равенство на dx :

Так как (по определению дифференциала), то

Таким образом, дифференциал сложной функции имеет тот же вид, если бы переменная u была не промежуточным аргументом, а независимой переменной.

Это свойство дифференциала называется инвариантностью (неизменяемостью) формы дифференциала .

Пример. .

Все правила дифференцирования можно записать для дифференциалов.

Пусть – дифференцируемы в точке х . Тогда

Докажем второе правило.

Производная неявной функции

Пусть дано уравнение вида , связывающее переменные и . Если нельзя явно выразить через , (разрешить относительно ) то такая функция называется неявно заданной . Чтобы найти производную от такой функции, нужно обе части уравнения продифференцировать по , считая функцией от . Из полученного нового уравнения найти .

Пример. .

Дифференцируем обе части уравнения по , помня, что есть функция от

Лекция 4. Производная и дифференциал функции одной переменной

Теорема: Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–Ґ< х < Ґ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

Производная сложной функции

Теорема: Пусть функция , определенная и непрерывная в окрестности , имеет производную в точке . Функция определена и непрерывна в окрестности , где , и имеет производную в точке . Тогда сложная функция имеет производную в точке и

.

где и - б.м.ф. Тогда

и , где б.м.ф. в точке .

28. Производная суммы, произведения и частного двух функций.

Производная суммы (разности) функций

Производная алгебраической суммы функций выражается следующей теоремой.

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,

Производная произведения функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и

Производная произведения двух функций не равана произведению производных этих функций.

Производная частного функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0 , то производная частного этих функций вычисляется по формуле

29. Производная обратной функции. Производная функции, заданной параметрически.

ТЕОРЕМА (производная обратной функции)

Пусть непрерывная, строго монотонная (возрастающая или убывающая) функция на отрезке и имеющая в точке производную . Тогда обратная функция имеет производную в точке и

.

ДОК.

= .

Теорема. (производная функции, заданной параметрически) Пусть функция x = φ(t) имеет обратную функцию t = Ф(x). Если функцииx=φ(t) , y = ψ(t) дифференцируемы и φ"(t) 0 , тогда

Доказательство

Так как функция x = φ(t) имеет обратную функцию, то формально y можно выразить черезx : y = ψ(Ф (x)) . Так как функция x = φ(t) дифференцируема, то, по теореме 5 , функция t = Ф(x) также дифференцируема.

Используя правила дифференцирования, получаем чтд

Аналогичную формулу можно получить и для второй производной y"" x :

Окончательно получаем

30. Производные высших порядков. Формула Лейбница.

Если f определена на интервале (a,b)®R, диф-ма в " точке xÎ(a,b) то на (a,b) возникает новая функция f:(a,b)®R, значение которой в точке x=f(x). Функция f сама может иметь производную (f): на (a,b)®R она по отношению к исходной функции называется второй производной от f и обозначается f(x), d 2 f(x)/dx 2 или f xx (x), f x 2 (x); Опр . Если определена производная f (n -1) (x) порядка n-1 от f то производная порядка n определяется формулой f (n) (x)=(f n -1))’(x). Для нее принято обозначение f (n) (x)=d n f(x)/dx n – ф-ла Лейбница , f (0) (x):=f(x).

31. Понятие дифференцируемости функции и первого дифференциала. Необходимое и достаточное условие дифференцируемости.

1.Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной

dy = f" (x )D x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде:

dy = f" (x )dx.

2. Дифференцируемость. Функция называется дифференцируемой в точке x, если ее приращение ∆y в этой точке может быть представлено в виде: ∆y=A∆x + α(∆x) ∆x, где A не зависит от ∆x, α и α(∆x) – бесконечно малая функция относительно ∆x при ∆x→0.

32. Геометрический смысл производной и дифференциала. Касательная и нормаль к графику.

Пусть f определена на (a,b) и непрерывна в точке x 0 Î(a,b), пусть y 0 =f(x 0), M 0 (x 0 ,y 0); x 0 +DxÎ(a,b), Dy=f(x 0 +Dx)-f(x 0), M(x 0 +Dx, y 0 +Dy). M 0 M: y=k(x-x 0)+y 0 (1),

1 )Если $ кон. предел lim D x ® 0 k(Dx)=k 0 то прямая y=k 0 (x-x 0)+y 0 (2) назыв.

(наклонной) касательной к графику f в точке (x 0 ,y 0);

2 ) Если $ бесконечный предел

lim D x ® 0 k(Dx)=¥, то прямая x=x 0 – вертикальная касательная к графику в точке (х 0 ,у 0);

При х=х 0 (2) – предельное положение (1) т.о. предельное положение секущей М 0 М

Dх®0 это касательная y=f(x) в точке х 0 , т.к. lim D x ® 0 k(Dx)=lim D x ® 0 Dy/Dx=f(x 0) то уравнение

касательной имеет вид y=f(x 0)(x-x 0)+ y 0 , где y 0 =f(x 0) (3). Из 3 получаем что производная в точке х 0 =tga, a - угол между касательной и осью Ох, первое слагаемое f(x 0)(x-x 0)=f(x 0)Dx, Dx=x-x 0 является диф-ом dy в точке х 0 Þ y-y 0 =dy т.о. дифференциал функции равен приращению ординаты касательной в соответствующей точке графика.

3 )Если lim D x ® 0 Dy/Dx=¥, то касательной является прямая х=х 0 при этом в точке х 0 бескон. производная может существовать или не существовать.

33. Инвариантность формы первого дифференциала. Дифференциалы высших порядков, неинвариантность их формы в общем случае .

Дифференциалы высших порядков . Диф-ал от диф-ла первого порядка dy=f’(x)dx функции y=f(x) (рассматриваемого только как ф-и переменной х т.е. приращение аргумента х (dx) принимается постоянным, при условии что повторное приращ-е переменной х совпадает с начальным) называется вторым диф-ом d 2 f(x):d(df(x))=d(f’(x)dx)=d(f’(x))dx=f”(x)dxdx=f”(x)dx 2 отсюда f”(x)=d 2 f(x)/dx 2 ; Опр . Диф-ом n-го порядка n=1,2… называется дифференциалом от дифференциала порядка n-1 при условии что в диф-ле берутся одни и те же приращения dx, независимого от х. d n f(x)=d(d n -1 f(x)) не трудно видеть, что d n f(x)=f (n) (x)dx n (dx n =(dx) n) Þ f (n) (x)=d n f(x)/dx n .

Неинвариантность формы дифференциала порядка выше первого

Рассмотрим случай, когда х является не независимой переменной, а функцией от другой переменной

Теперь в правой части формулы (3) от переменной u зависит не только функция f (x ), но и дифференциал dx . Следовательно

Сравнивая формулы (2) и (4), убеждаемся, что дифференциалы второго (и более высоких порядков) не обладают инвариантностью формы.

34. Экстремумы функции. Необходимые условия экстремума (теорема Ферма).

Точки экстремума

Экстре́мум - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума . Соответственно, если достигается минимум - точка экстремума называется точкой минимума , а если максимум - точкой максимума . В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум) .

Точка x 0 называется точкой строгого локального максимума (минимума) функции f (x ), если для всех значений аргумента из некоторой достаточно малой δ - окрестности точки х 0 выполняется неравенство

f (x ) < f (x 0) (f (x ) > f (x 0))

при х x 0 .
Локальный максимум и локальный минимум объединяются общим названием экстремум. Из определения следует, что понятие экстремума носит локальный характер в том смысле, что неравенство f (x ) < f (x 0) (f (x ) > f (x 0)) может и не выполняться для всех значений х в области определения функции, а должно выполняться лишь в некоторой окрестности точки x 0 .

Теорема. Если функция в некоторой точке x = x 0 имеет (конечную) производную , то

1) приращение функции может быть представлено в виде

или, короче, , где a есть величина, зависящая от Dx и вместе с ним стремящаяся к нулю, т.е. ;

2) функция в этой точке необходимо непрерывна.

Доказательство. 1) Согласно определению производной, . Пользуясь теоремой, о представлении функции имеющей предел в виде суммы этого предела и бесконечно малой, запишем

, где .

Определяя отсюда Dy , придем к формуле (3.6).

2) Чтобы доказать непрерывность функции, рассмотрим выражение (3.6). При Dx ®0 сумма в правой части (3.6) обращается в нуль. Следовательно, , или , а это означает, что функция в точке x 0 непрерывна.

Из доказанной теоремы следует, что функция, имеющая производную в данной точке, будет непрерывной в этой точке. Однако непрерывная в данной точке функция не всегда имеет производную в этой точке. Так, в точке x 0 = 1 функция y = |x – 1| является непрерывной, но производной в этой точке не имеет. Это означает, что данное условие является лишь необходимым.

Производная сложной функции

Теорема. Пусть 1) функция v = j (x ) имеет в некоторой точке x производную , 2) функция y = f (v ) имеет в соответствующей точке v производную Тогда сложная функция у = f (j (x )) в упомянутой точке х также будет иметь производную, равную произведению производных функций f (v ) и j (x ): [ f (j (x )) ]" = или короче

Доказательство. Придадим х произвольное приращение Δх ; пусть Δv – соответствующее приращение функции v = j (x ) и, наконец, Δу – приращение функции y = f (v ), вызванное приращением Δv . Воспользуемся соотношением (3.6), которое, заменяя x на v , перепишем в виде (a зависит от Δv и вместе с ним стремится к нулю). Разделив его почленно на Dx , получим

.

Если Dx устремить к нулю, то, согласно (3.6) (при условии, что у = v ), будет стремиться к нулю и Δv , а тогда, как мы знаем, будет также стремиться к нулю зависящая от Δv величина a . Следовательно, существует предел

который и представляет собой искомую производную .

Таким образом, производная сложной функции равна произведению производной внешней функции на производную внутренней функции.

Случай сложной функции, полученной в результате нескольких суперпозиций, исчерпывается последовательным применением правила (3.7). Так, если у = f (u ), u = j (v ), v = y (x ), то

Примеры. 1. Пусть y = log a sin x ,иначе говоря, y = log a v , где v = sin x . По правилу (3.7)

2. , т.е. y= e u , u = v 2 , v = sin x. По правилу (3.8)

1.7. Производная показательно степенной функции



Пусть u = u (x ) > 0 и v = v (x ) – функции, имеющие производные в фиксированной точке x . Найдем производную функции y = u v . Логарифмируя это равенство, получим: ln y = v ln u.

Продифференцируем обе части данного равенства по x :

.

Отсюда , или

Таким образом, производная показательно – степенной функции состоит из двух слагаемых: первое слагаемое получается, если при дифференцировании предположить, что и есть функция от х , а v есть постоянная (т.е. рассматривать u v как степенную функцию); второе слагаемое получается, если предположить, что v есть функция от х , а u = const (т.е. рассматривать u v как показательную функцию).

Примеры. 1. Если y = x tg x , то, полагая u = x , v = tg x ,согласно (3.9) имеем

= tg x x tg x – 1 + x tg x ln x sec 2 x .

Прием, примененный в данном случае для нахождения производной и состоящий в том, что сначала находят производную логарифма рассматриваемой функции, широко применяется при дифференцировании функций: при отыскании производной функции эти функции сначала логарифмируют, а затем из равенства, полученного после дифференцирования логарифма функции, определяют производную функции. Такая операция называется логарифмическим дифференцированием.

2.Требуется найти производную от функции

.

Логарифмируя, находим:

ln y = 2ln(x + 1) + ln(x – 1) – 3 ln(x + 4) – x.

Дифференцируем обе части последнего равенства:

.

Умножая на у и подставляя вместо у , получаем.

Функция y=f(x) называется дифференцируемой в некоторой точке x 0 , если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.

Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что она дифференцируема на отрезке [а; b] или соответственно в интервале (а; b).

Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.

Теорема. Если функция y=f(x) дифференцируема в некоторой точке x 0 , то она в этой точке непрерывна.

Таким образом, из дифференцируемости функции следует ее непрерывность.

Доказательство . Если, то

где б бесконечно малая величина, т.е. величина, стремящаяся к нулю при Дx>0. Но тогда

Дy=f "(x 0) Дx+бДx=> Дy>0 при Дx>0, т.е f(x) - f(x 0)>0 при x>x 0 ,

а это и означает, что функция f(x) непрерывна в точке x 0 . Что и требовалось доказать.

Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).

Рассмотрим на рисунке точки а, b, c.

В точке a при Дx>0 отношение не имеет предела (т.к. односторонние пределы различны при Дx>0-0 и Дx>0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к 1 и к 2 . Такой тип точек называют угловыми точками.

В точке b при Дx>0 отношение является знакопостоянной бесконечно большой величиной. Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки - "точка перегиба" c вертикальной касательной.

В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиеся вертикальные касательные. Тип - "точка возврата" с вертикальной касательной - частный случай угловой точки.

1. Рассмотрим функцию y=|x|. Эта функция непрерывна в точке

Покажем, что она не имеет производной в этой точке.

f(0+Дx) = f(Дx) = |Дx|. Следовательно, Дy = f(Дx) - f(0) = |Дx|

Но тогда при Дx< 0 (т.е. при Дx стремящемся к 0 слева)

А при Дx > 0

Т.о., отношение при Дx> 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x| в точке x= 0 не существует. Геометрически это значит, что в точке x= 0 данная "кривая" не имеет определенной касательной (в этой точке их две).

2. Функция определена и непрерывна на всей числовой прямой. Выясним, имеет ли эта функция производную при x= 0.

Следовательно, рассматриваемая функция не дифференцируема в точке x= 0. Касательная к кривой в этой точке образует с осью абсцисс угол p/2, т.е. совпадает с осью Oy.

Читайте также: