Метаматериалы. Виды и устройство

Виктор Георгиевич Веселаго

Почти 40 лет назад советский ученый Виктор Веселаго выдвинул гипотезу о существовании материалов с отрицательным показателем преломления:

Метаматериалы - это композитные материалы, свойства которых обусловлены не столько индивидуальными физическими свойствами их компонентов, сколько микроструктурой. Термин «метаматериалы» особенно часто применяют по отношению к тем композитам, которые демонстрируют свойства, нехарактерные для объектов, встречающихся в природе.

Волновое уравнение

Из уравнений Максвелла для однородной нейтральной непроводящей среды следует, что в электромагнитных полях возможно распространение электромагнитных волн с фазовой скоростью

В вакууме эта скорость равна скорости распространения света

Таким образом фазовая скорость распространения э-м. волн в веществе определяется магнитной и диэлектрической проницаемостью сред.

Отношение скорости света в вакууме к|до| скорости света в среде - n называют абсолютным показателем преломления среды

Виктор Веселаго выдвинул такую гипотезу:

«Если не учитывать потерь и считать n, ε и μ действительными числами, то видно, что одновременная смена знаков ε и μ никак не отражается на соотношении. Такое положение может быть объяснено различными способами. Во-первых, можно признать, что свойства веществ действительно не зависят от одновременной смены знаков ε и μ. Во-вторых, может оказаться, что одновременная отрицательность ε и μ противоречит каким-либо основным законам природы, и поэтому вещества с ε < 0 и μ < 0 не могут существовать. Наконец, следует признать, что вещества с отрицательными ε и μ обладают какими-то свойствами, отличными от свойств веществ с положительными ε и μ. Как мы увидим в дальнейшем, осуществляется именно этот третий случай.»

«Правые» и «Левые» изотропные среды

Пусть в однородной нейтральной непроводящей среде в направлении оси х распространяется плоская электромагнитная волна, волновой фронт которой перпендикулярен направлению распространения.

Векторы и образуют с направлением распространения волны правовинтовую систему, в фиксированной точке пространства меняются с течением времени по гармоническому закону в одной фазе.

Такие среды, соответственно, называют «правыми».

Среды, у которых ε, μ — одновременно отрицательные, называют «левыми».

У таких сред электрический, магнитный и волновой вектора образуют систему левых векторов.

Действительно, если толкнуть маятник рукой, он послушно переместится в направлении толчка и начнет колебаться с так называемой резонансной частотой. Подталкивая маятник в такт с качанием, можно увеличить амплитуду колебаний. Если же толкать его с более высокой частотой, то толчки перестанут совпадать с колебаниями по фазе, и в какой-то момент руку ударит маятник, движущийся ей навстречу. Точно так же электроны в материале с отрицательным показателем преломления входят в противофазу и начинают сопротивляться «толчкам» электромагнитного поля.

Таким образом в 1968 г. Веселаго показал, что у вещества с отрицательными ε и μ показатель преломления n должен быть меньше 0.

Экспериментальное подтверждение .

Электроны в материале движутся вперед и назад под действием электрического поля и по кругу под действием магнитного. Степень взаимодействия определяется двумя характеристиками вещества: диэлектрической проницаемостью ε и магнитной проницаемостью μ. Первая показывает степень реакции электронов на электрическое поле, вторая — степень реакции на магнитное. У подавляющего большинства материалов ε и μ больше нуля.

Отрицательные ε или μ получаются в том случае, когда электроны в материале движутся в направлении, противоположном по отношению к силам, создаваемым электрическим и магнитным полями. Хотя такое поведение кажется парадоксальным, заставить электроны двигаться против сил электрического и магнитного полей не так уж сложно.

Где и как такие вещества искать?

Первое экспериментальное подтверждение возможности создания материала с отрицательным показателем преломления было получено в 2000 г. в Калифорнийском университете в Сан-Диего (UCSD). Поскольку элементарные кирпичики метаматериала должны быть значительно меньше длины волны, исследователи работали с излучением сантиметрового диапазона и использовали элементы размером в несколько миллиметров.

Ключ к такого рода отрицательной реакции — резонанс, то есть стремление колебаться со специфической частотой. Он создается в метаматериале искусственно с помощью крошечных резонансных контуров, имитирующих отклик вещества на магнитное или электрическое поле. Например, в разорванном кольцевом резонаторе (РКР) магнитный поток, проходящий через металлическое кольцо, наводит в нем круговые токи, аналогичные токам, обуславливающим магнетизм некоторых материалов. А в решетке из прямых металлических стержней электрическое поле создает направленные вдоль них токи. Свободные электроны в таких контурах колеблются с резонансной частотой, зависящей от формы и размеров проводника. Если приложено поле с частотой ниже резонансной, будет наблюдаться нормальная положительная реакция. Однако с увеличением частоты отклик становится отрицательным, так же как в случае с маятником, движущимся навстречу, если толкать его с частотой выше резонансной. Таким образом, проводники в некотором диапазоне частот могут реагировать на электрическое поле как среда с отрицательной ε, а кольца с разрезами могут имитировать материал с отрицательной μ. Эти проводники и кольца с разрезами и есть элементарные блоки, необходимые для создания широкого ассортимента метаматериалов, в том числе таких, которые искал Веселаго.

Калифорнийские ученые сконструировали метаматериал, состоящий из чередующихся проводников и РКР, собранных в виде призмы. Проводники обеспечивали отрицательную ε, а кольца с разрезами — отрицательную μ. В результате должен был получиться отрицательный показатель преломления. Для сравнения была изготовлена призма точно такой же формы из тефлона, у которого n = 1,4. Исследователи направили пучок СВЧ-излучения на грань призмы и измерили интенсивность волн, выходящих из нее разными углами. Как и ожидалось, пучок подвергся положительному преломлению на призме из тефлона и отрицательному на призме из метаматериала.

Следствия.

Преломление на границе раздела двух сред с различной правизной.

Суперлинза.

Простая плоскопараллельная пластинка из метаматериала с n<0 может фокусировать лучи от источника на малом расстоянии от неё см. рисунок ниже.

Плоскопараллельная пластинка из метаматериала с n<0

В правой среде пространство изображений линзы нетождественно самому предмету так как оно формируется без затухающих (evanescent) волн. В левой среде затухающие волны не затухают, даже наоборот их амплитуда увеличивается при удалении волны от предмета, поэтому изображение формируется с участием затухающих волн, что может позволит получать изображения с лучшим, чем дифракционный предел, разрешением. Возможно преодоление дифракционного предела при создании таких оптических систем, повышение с их помощью разрешающей способности микроскопов, создание микросхем наномасштаба, повышение плотности записи на оптические носители информации.

Отрицательное давление

Отражение луча, распространяющегося в среде с n < 0, от идеально отражающей поверхности. Луч света при отражении от тела увеличивает свой импульс на величину , (N-число падающих фотонов). Световой давление, оказываемое светом на поглощающие правые среды, сменяется его притяжением в левой среде.

Новости

В начале 2007 г. было заявлено о создании метаматериала с отрицательным показателем преломления в видимой области. У материала показатель преломления на длине волны 780нм был равен −0.6

В 2011 году вышли статьи- в США апробирована технология, которая позволяет в массовом порядке производить большие листы метаматериалов

Метаматериалы методом печати

Вывод

Изучение и создание новых метаматериалов с уникальными свойствами позволит в ближайшем будущем значительно продвинуться вперёд человечеству во многих областях науки и техники. Это и астрономические исследования благодаря суперлинзам, преодолевающим дифракционный предел разрешения; альтернативные источники энергии - появятся новые солнечные батареи с КПД более 20%; материалы - невидимки и т.д. Количество направлений в исследованиях огромно и самое главное, они успешны.

МОСКВА, 26 сен — РИА Новости, Ольга Коленцова. Порой достижения современных технологий можно принять за волшебство. Только вместо магии работает точная наука. Одними из областей исследований, результаты которыхмогли бы вполне послужить иллюстрацией свойств "сказочных атрибутов", являются разработка и создание метаматериалов.

Математики нашли способ превратить метаматериал в "световой компьютер" Математики выяснили, что свойства метаматериалов можно в теории изменить так, что набор из нескольких разных кусочков таких соединений сможет производить сложные математические операции с одиночными лучами света.

С чисто физической точки зрения метаматериалы представляютсобой искусственно сформированные и особым образом выстроенныеструктуры, обладающие недостижимыми в природе электромагнитными или оптическими свойствами.Последние определяются даже нехарактеристиками составляющих их веществ, а именно структурой.Ведь из одинаковых материалов можно построить похожие внешне дома, но один будет обладать отличной звукоизоляцией, а в другом вы будете слышать даже дыхание соседа из квартиры напротив. В чем же секрет? Только в умении строителя распоряжаться предоставленными средствами.


На данный момент материаловеды уже создали немало структур, свойства которых не встречаются в природе, хотя и не выходят за рамки физических законов. Например, один из созданных метаматериалов может управлять звуковыми волнами так ювелирно, что те удерживают в воздухе небольшой шарик. Он состоит из двух решеток, собранных при помощи кирпичиков, заполненных термопластовыми стержнями, которые уложены "змейкой". Звуковая волна фокусируется словно свет в линзе, и исследователи считают, что данное устройство позволит им развить управление звуком до возможности изменять его направление, как сейчас меняют ход светового луча при помощи оптики.

© Иллюстрация РИА Новости. А.Полянина


© Иллюстрация РИА Новости. А.Полянина

Другой метаматериал может перестраивать сам себя. Объект из него собирается без помощи рук, ведь изменение формы можно запрограммировать! Структура такого "умного" материала состоит из кубов, каждую стенку которых составляют два внешних слоя из полиэтилентерефталата и один внутренний из двусторонней клейкой ленты. Эта конструкция позволяет изменить форму, объем и даже жесткость объекта.

Но самыми удивительными свойствами обладают оптические метаматериалы, которые могут менять визуальное восприятие реальности. Они "работают" в диапазоне волн, которые видит человеческий глаз. Именно из таких материалов ученые создали ткань, из которой можно изготовить плащ-невидимку.

Правда, пока невидимым в оптическом диапазоне можно сделать только микрообъект.

Возможность создания материала с отрицательным углом преломления предсказалеще в 1967 году советский физик Виктор Веселаго, но только сейчас появляются первые образцы реальных структур с такими свойствами. Благодаря отрицательному углупреломления , лучи света огибают объект, делая его невидимым. Таким образом, наблюдатель замечает лишь то, что происходит за спиной надевшего "чудесный" плащ.

© Фото: Xiang Zhang group, Berkeley Lab/UC Berkeley


© Фото: Xiang Zhang group, Berkeley Lab/UC Berkeley

Последнее достижение в создании оптических метаматериалов принадлежит российским ученым из НИТУ "МИСиС". Причем "ингредиенты" использовались самые обычные — воздух, стекло и вода. Работа ученых удостоилась публикации в одном из самых высокорейтинговых журналов мира Scientific Reports издательского дома Nature . , каждый такой образец может стоить тысячи евро, — подчеркнул научный сотрудник лаборатории "Сверхпроводящие метаматериалы" НИТУ "МИСиС", кандидат технических наук Алексей Башарин.К тому же вероятность ошибки при формовании такой системы очень высока даже с применением самых высокоточных инструментов.Однако если создать более крупномасштабный материал, в котором будут не оптические (400-700 нм), а радиоволны(длиной в 7-8 см), физика процесса от такого масштабирования не изменится, зато технология их создания станет проще."

Изучая свойства созданных структур, авторы работы показали, что у такого типа веществ есть сразу несколько практических применений.Прежде всего это сенсоры сложных молекул, так как последние, попадая в поле метаматериала, начинают светиться. Таким способом можно определять даже единичные молекулы, что потенциально может существенно отразиться на развитии, например, судебной криминалистики. Кроме того, такой метаматериал можно использовать как светофильтр, выделяя из падающего излучения свет определенной длины.Еще он применим как основа для создания сверхнадежной магнитной памяти, потому что структура ячеек метаматериала не дает им перемагничивать друг друга и тем самым терять информацию.

Отношение скорости света с в вакууме к фазовой скорости v света в среде:

называется абсолютным показателем преломления этой среды.

ε - относительная диэлектрическая проницаемость,

μ - относительная магнитная проницаемость.

Для любой среды, кроме вакуума, величина n зависит от частоты света и состояния среды (её температуры, плотности и т.д.). Для разреженных сред (например, газов при нормальных условиях) .

Чаще всего о коэффициенте преломления материала вспоминают тогда, когда рассматривают эффект преломлении света на границе раздела двух оптических сред.

Данное явление описывается законом Снеллиуса :

где α - угол падения света, пришедшего из среды с показателем преломления n 1 , а β - угол преломления света в среде с показателем преломления n 2 .

Для всех сред, которые могут быть найдены в природе, лучи падающего и преломленного света находятся по разные стороны от нормали, восстановленной к границе раздела сред в точке преломления. Однако если формально подставить в закон Снеллиуса n 2 <0 , реализуется следующая ситуация: лучи падающего и преломленного света находятся по одну сторону от нормали.

На теоретическую возможность существования уникальных материалов с отрицательным показателем преломления указал советский физик В.Веселаго почти 40 лет назад. Дело в том, что коэффициент преломления связан с двумя другими фундаментальными характеристиками вещества, диэлектрической проницаемостью ε и магнитной проницаемостью μ , простым соотношением: n 2 = ε·μ . Несмотря на то, что данному уравнению удовлетворяют как положительные, так и отрицательные значения n, ученые долго отказывались верить в физический смысл последних - до тех пор, пока Веселаго не показал, что n < 0 в том случае, если одновременно ε < 0 и μ < 0 .

Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны - это любой металл при частотах выше плазменной частоты (при которой металл становится прозрачным). В этом случае ε < 0 достигается за счет того, что свободные электроны в металле экранируют внешнее электромагнитное поле. Гораздо сложнее создать материал с μ < 0 , в природе такие материалы не существуют.

Прошло 30 лет, прежде чем английский ученый Д.Пендри (John Pendry) в 1999 г. показал, что отрицательная магнитная проницаемость может быть получена для проводящего кольца с зазором. Если поместить такое кольцо в переменное магнитное поле, в кольце возникнет электрический ток, а на месте зазора возникнет дуговой разряд. Поскольку металлическому кольцу можно приписать индуктивность L , а зазору соответствует эффективная емкость С , систему можно рассматривать как простейший колебательный контур с резонансной частотой ω 0 ~ 1/(LC) -1/2 . При этом система создает собственное магнитное поле, которое будет положительным при частотах переменного магнитного поля ω < ω 0 и отрицательным при ω > ω 0 .

Таким образом, возможны системы с отрицательным откликом как на электрическую, так и на магнитную компоненту электромагнитного излучения. Объединить обе системы в одном материале впервые удалось американским исследователям под руководством Д.Смита (David Smith) в 2000г. Созданный метаматериал состоял из металлических стержней, ответственных за ε < 0 , и медных кольцевых резонаторов, благодаря которым удалось добиться μ < 0 .

Несомненно, такую структуру сложно назвать материалом в традиционном смысле этого слова, поскольку она состоит из отдельных макроскопических объектов. Между тем, данная структура «оптимизирована» для микроволнового излучения, длина волны которого значительного больше отдельных структурных элементов метаматериала. Поэтому с точки зрения микроволн последний также однороден, как например, оптическое стекло для видимого света. Последовательно уменьшая размеры структурных элементов можно создавать метаматериалы с отрицательным показателем преломления для терагерцового (от 300 ГГц до 3 ТГц) и инфракрасного (от 1,5 ТГц до 400 ТГц) диапазонов спектра. Ученые ожидают, что благодаря достижениям современных нанотехнологий в самое ближайшее время будут созданы метаматериалы и для видимого диапазона спектра.

Практическое использование таких материалов, в первую очередь, связано с возможностью создания на их основе терагерцовой оптики, что, в свою очередь, приведет к развитию метеорологии и океанографии, появлению радаров с новыми свойствами и средств всепогодной навигации, устройств дистанционной диагностики качества деталей и систем безопасности, позволяющих обнаружить под одеждой оружие, а также уникальных медицинских приборов.


Метаматериалы материалы,природные свойства которых обусловлены не столько природными физическими свойствами, сколько периодической микроструктурой создаваемой человеком. Куб метаматериала представляет собой трехмерную матрицу, образованную медными проводниками и кольцами с разрезом. Микроволны с частотами около 10 ГГц ведут себя в таком кубе необычно, потому что для них куб имеет отрицательный показатель преломления. Шаг решетки 2,68 мм Суперлинза со сверх разрешением радиодиапазона 2/24


Свойства и строение метаматериалов Строительными блоками метаматериалов являются электромагнитные резонаторы, обычно в виде металлических полосок, спиралей, разорванных колец. (рис. 1) Изменяя форму, размеры, взаимное расположение резонаторов, можно направленно формировать свойства метаматериалов. Свойства метаматериалов существенно отличаются от свойств компонентов, входящих в его состав, и определяются особым упорядочением и структурой компонентов (рис. 2) рис. 1 рис. 2 3/24


История создания В 1898 году Джагадис Чандра Бозе провел первый микроволновый эксперимент по исследованию поляризационных свойств созданных им структур искривленной конфигурации. В 1914 году Линдман воздействовал на искусственные среды, представлявшие собой множество беспорядочно ориентированных маленьких проводов, скрученных в спираль и вложенных в фиксировавшую их среду. Первые упоминания о метаматериалах с отрицательным коэффициентом преломления начинаются с упоминания работы советского физика Виктора Веселаго, опубликованной в журнале "Успехи физических наук" за 1968 г. 4/24 Джагадис Чандра Бозе Виктор Веселаго


Отрицательный показатель преломления Для всех сред, которые могут быть найдены в природе, лучи падающего и преломленного света находятся по разные стороны от нормали, восстановленной к границе раздела сред в точке преломления. Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны – это любой металл при частотах выше плазменной частоты. В этом случае ε


Отрицательный показатель преломления Для достижения μ


Видимый спектр Для начала ученые взяли лист стекла и нанесли на него тонкий слой серебра, затем слой фторида магния, затем снова слой серебра; таким образом, был получен «сэндвич» с фторидом толщиной всего 100 нм. После этого ученые при помощи стандартной технологии травления проделали в этом «сэндвиче» множество крохотных квадратных отверстий (шириной всего 100 нм, гораздо меньше длины волны красного света); в результате получилась решетчатая структура, напоминающая рыбацкую сеть. Затем они пропустили через полученный материал луч красного света и измерили показатель преломления, который составил -0,6. 7/24 Молекула ДНК


Применение Потенциальные применения метаматериалов охватывают все области, в которых используется электромагнитное излучение - от космических систем до медицины. Спектр электромагнитных метаматериалов, разрабатываемых в настоящее время огромен: С помощью метаматериалов можно создавать устройства, создание которых невозможно только при использовании природных материалов. отрицательный коэффициент преломления изображение высокой четкости плащ-невидимка нано-оптические и квантовые информационные технологии радиочастотные, СВЧ, терагерцевые, оптические метаматериалы работы в соответствующей области нанотехнологий - нанофотонике - позволят создавать устройства, гораздо быстрее обрабатывающие информацию, чем существующие компьютеры. Благодаря тому, что метаматериалы обладают отрицательным показателем преломления, они идеальны для маскировки объектов, так как их невозможно обнаружить средствами радиоразведкимаскировкирадиоразведки 8/24


Используя метаматериалы можно не только существенно улучшить параметры известных электромагнитных приборов, но и создать принципиально новые приборы: от сверх линз с разрешением много меньшим длины волны излучения до экранов невидимости. Большинство практических применений - от экранов невидимости до сверх линз и поляризаторов требуют создания метаматериала с прецизионными трехмерными элементами. 9/24


ДОСТИЖЕНИЯ: 1. Суперлинза (материалах с отрицательным показателем преломления можно преодолеть дифракционный предел разрешения обычной оптики.Первая экспериментально продемонстрированная линза с отрицательным показателем преломления имела разрешение в три раза лучше дифракционного предела.) 2. Видение сквозь стены. (новый класс искусственных материалов, которые демонстрируют сильный магнитный отклик на излучение терагерцевого диапазона.) 3. Блеф-стена. (создаёт иллюзию отсутствия реального объекта, то "ворота" формируют впечатление, что объект (в данном случае стена) существует там, где на деле его нет (то есть имеется открытый канал). 4. Антизеркало (при отражении электромагнитной волны оно обращает магнитную составляющую колебаний, но не трогает электрическую. Так что в сравнении с зеркалом обычным, это можно было бы назвать анти зеркалом.) 5. Плащ-невидимка. 10/24


Фотонный кристалл Фотонный кристалл – это периодическая структура, позволяющая изменять направление излучения и выделять (пропускать или поглощать) излучение с определенной частотой. Идея фотонного кристалла была предложена в 1987 году Эли Яблоновичем Благодаря периодическому изменению коэффициента преломления, позволяют получить разрешённые и запрещённые зоны для энергий фотонов. 11/24


Фотонный чип Устройство, основанное на квантовой запутанности фотонов, в котором производятся всевозможные манипуляции с квантовым состоянием запутанных фотонов и с высокой точностью производятся измерения полученных результатов. Цель – создание компактных высокоскоростных устройств обработки информации, которые могут успешно справляться с входными потоками, скоростью более чем 100 гигабит в секунду. 12/24 Квантовые запутанности фотонов




14/24


Гиперболические метаматериалы Характеристики: Высокая степень анизотропности Изготавливаются из переходных металлов и диэлектрических слоев Обладают свойствами металла и диэлектрика Дисперсия света в таких материалах становится гиперболической Могут повысить плотность фотонах состояний, пропорциональную скорости радиоактивного распада Большое их количество вызывает потери Метаматериалы с гиперболической дисперсией.Примеры 3D HMMs с высокой степенью анизотропности. Изготовлены из плазмонной нанопроволки(А) и переходных слоев металла и диэлектрика(В). k(x) и k(0)-тангенциальные компоненты нормированного волнового вектора;Ex,Ey,Ez-это диагональные компоненты тензора диэлектрической проницаемости свободного пространства,-длина волны в свободном пространстве. (С)Имитация излучения в HMM и спектра мощности в HMM по (вверху)сравнению с обычными диэлектриками(внизу) 15


Метаповерхности Метаповерхности это очень тонкие пленки метаматериалов, содержащих слои оксидов или двумерную структуру мельчайших субволновых антенн. Метаповерхности создаются с использованием электронно-пучковой литографии или резки сфокусированным ионным пучком, совместимых с существующими полупроводниковыми технологиями и процессами. В последнее время создаются из оксидов цинка и индия, легированного алюминия и галлия. У этих металлов и окисей металлов меньшие оптические потери и более широкие возможности для модуляции в уже существующие оптические системы. Метаповерхность 16/24


Свойства мета поверхностей характеризуются малыми потерями широкий рабочий спектр контроль характеристик света(частота, фаза, импульс, угловой момент и поляризация) эффективная модуляции света генерация световых импульсов заданной формы, управления распространением световых пучков в пространстве диагностика структур с нано точностью 17/24 Изображения мета поверхности, полученное при помощи сканирующего туннельного микроскопа.


18/24 Справа на рисунке (часть Б) схематически изображена так- называемая "гиперболическая мета поверхность" - миниатюрная металлическая решетка, используемая для увеличения скорости испускания фотонов квантовыми излучателями. Область ее применения - квантовые информационные системы, включая квантовые компьютеры, потенциально намного более мощные, чем современные компьютеры Слева на рисунке (часть A) показана матрица нано-антенн, представляющая собой пример плазмонной мета поверхности. Ее использование возможно в ряде приложений, включая применение ее в качестве гиперлинзы с целью повышения разрешающей способности оптических микроскопов, в некоторых случаях до 10 раз.


Гиперболические мета поверхности Характеристики: Малые,восполнимые потери Широкий контроль над плотностью фотонных состояний Гиперболические мета поверхности.(А) Иллюстрация увеличения скорости излучения квантовых источников на мета поверхности,состоящей из металлической решетки на диэлектрической подложке (В и С)Иллюстрация поверхностных гиперлинз без усиления(В) и с усилением (С).Два рассеивателя находятся на верхней части решетки и обладают субволновым разделением 19/24


Применение мета поверхностей Могут быть интегрированы в более сложные схемы: микропроцессор компьютера миниатюрные многофункциональные приборы применяемые в биологии и медицине (Чтобы «увидеть насквозь» человека или предмет, в будущем не придется прибегать к небезвредному рентгену. Метаматериалы позволят работать с любыми длинами волн – и для любых целей). мета поверхности также можно использовать как широкодиапазонный инфракрасный химический датчик метаструктуры могут быть использованы для создания компьютерных голограмм Применение в квантовых информационных технологиях Фото разработанной учеными металинзы под микроскопом. Один из примеров компьютерной голограммы 20/24


Вывод Потенциальные применения метаматериалов охватывают все области, в которых используется электромагнитное излучение - от космических систем до медицины. отрицательный коэффициент преломления изображение высокой четкости маскировочные технологии нано-оптические и квантовые информационные технологии компьютерные технологии на основе фотонного чипа В каждой из областей ученые добились немалых достижений, но пока технологии на основе метаматериалов не получили широкого использования в обществе. Основная проблема во всех областях-миниатюризация технологий. 21/24


Список литературы Планарная фотоника и мета поверхности (Килдышев А.В.,Шалаев В.М) - Метаматериалы или дилемма «невидимости» Отриц. показатель преломления Метаматериалы для видимого спектра применение метаматериалов 22/24





Так соборы кристаллов сверхжизненных
Добросовестный свет-паучок,
Распуская на ребра, их сызнова
Собирает в единый пучок.
О.Мандельштам

Детская задачка «Что тяжелее, килограмм ваты или килограмм железных опилок?» поставит в затруднение разве что несообразительного первоклассника. Гораздо интереснее порассуждать на тему: «Какими свойствами будет обладать материал, который мы получим, если тщательно смешаем мелко измельченную вату и железные опилки?» Интуитивно понятно: чтобы ответить на этот вопрос, надо вспомнить свойства железа и ваты, после чего можно с уверенностью утверждать, что полученный материал наверняка будет, например, реагировать на присутствие магнита и воды. Однако всегда ли свойства многофазного материала определяются исключительно свойствами образующих его компонентов? Хочется ответить на этот вопрос положительно, ведь сложно представить себе, скажем, смесь диэлектриков (например, опилок и пенопластовых шариков), которая проводит электрический ток.

«Такое бывает только в сказках!» - постарается реабилитироваться первоклассник, вспомнив многочисленных колдунов и волшебниц из детских сказок, которые, смешивая всевозможные мухоморы, лягушачьи лапки и крылья летучих мышей, получали магические порошки, волшебные свойства которых, строго говоря, мухоморам и лягушачьим лапкам несвойственны. Впрочем, как это ни удивительно, современная наука знает примеры того, как совмещение вполне заурядных материалов позволяет создавать объекты, свойства которых не только не присущи используемым компонентам, но, в принципе, не могут быть найдены в природе и, как может показаться на первый взгляд, запрещены законами физики. «Это чудо!», - скажет первоклассник. «Нет, это метаматериалы!» - возразит современный ученый. И оба будут по-своему правы, потому что с точки зрения классической науки метаматериалы способны творить самые настоящие чудеса. Впрочем, сам процесс создания метаматериала тоже подобен волшебству, т.к. компоненты метаматериала недостаточно просто смешать, их необходимо правильно структурировать.

Метаматериалы - это композитные материалы, свойства которых обусловлены не столько индивидуальными физическими свойствами их компонентов, сколько микроструктурой. Термин «метаматериалы» особенно часто применяют по отношению к тем композитам, которые демонстрируют свойства, нехарактерные для объектов, встречающихся в природе.

Одним из наиболее горячо обсуждаемых в последнее время типов метаматериалов являются объекты с отрицательным показателем преломления. Из курса школьной физики хорошо известно, что показатель преломления среды (n ) является величиной, показывающей во сколько раз фазовая скорость электромагнитного излучения в среде (V ) меньше скорости света в вакууме (c ): n = c / V . Показатель преломления вакуума равен 1 (что, собственно, следует из определения), тогда как для большинства оптических сред он больше. Например, обычное силикатное стекло имеет показатель преломления 1.5, а значит, свет распространяется в нем со скоростью в 1.5 раза меньше, чем в вакууме. Важно отметить, что в зависимости от длины волны электромагнитного излучения величина n может различаться.

Чаще всего о коэффициенте преломления материала вспоминают тогда, когда рассматривают эффект преломлении света на границе раздела двух оптических сред. Данное явление описывается законом Снеллиуса:

n 1 ·sinα = n 2 ·sinβ,

где α - угол падения света, пришедшего из среды с показателем преломления n 1 , а β - угол преломления света в среде с показателем преломления n 2 .

Для всех сред, которые могут быть найдены в природе, лучи падающего и преломленного света находятся по разные стороны от нормали, восстановленной к границе раздела сред в точке преломления (Рис.1а). Однако если формально подставить в закон Снеллиуса n 2 <0, реализуется ситуация, которая еще до недавнего времени казалась физикам абсурдной: лучи падающего и преломленного света находятся по одну сторону от нормали (Рис.1б).

На теоретическую возможность существования уникальных материалов с отрицательным показателем преломления указал советский физик В.Веселаго почти 40 лет назад. Дело в том, что коэффициент преломления связан с двумя другими фундаментальными характеристиками вещества, диэлектрической проницаемостью ε и магнитной проницаемостью μ, простым соотношением: n 2 = ε·μ. Несмотря на то, что данному уравнению удовлетворяют как положительные, так и отрицательные значения n, ученые долго отказывались верить в физический смысл последних - до тех пор, пока Веселаго не показал, что n < 0 в том случае, если одновременно ε < 0 и μ < 0.

Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны - это любой металл при частотах выше плазменной частоты (при которой металл становится прозрачным). В этом случае ε < 0 достигается за счет того, что свободные электроны в металле экранируют внешнее электромагнитное поле. Гораздо сложнее создать материал с μ < 0, в природе такие материалы не существуют. Именно по этой причине работы Веселаго долгое время не привлекали должного внимания научной общественности. Прошло 30 лет, прежде чем английский ученый Д.Пендри (John Pendry) в 1999 г. показал, что отрицательная магнитная проницаемость может быть получена для проводящего кольца с зазором. Если поместить такое кольцо в переменное магнитное поле, в кольце возникнет электрический ток, а на месте зазора возникнет дуговой разряд. Поскольку металлическому кольцу можно приписать индуктивность L, а зазору соответствует эффективная емкость С, систему можно рассматривать как простейший колебательный контур с резонансной частотой ω 0 ~ 1/(LC) -1/2 . При этом система создает собственное магнитное поле, которое будет положительным при частотах переменного магнитного поля ω < ω 0 и отрицательным при ω > ω 0 .

Таким образом, возможны системы с отрицательным откликом как на электрическую, так и на магнитную компоненту электромагнитного излучения. Объединить обе системы в одном материале впервые удалось американским исследователям под руководством Д.Смита (David Smith) в 2000г. Созданный метаматериал состоял из металлических стержней, ответственных за ε < 0, и медных кольцевых резонаторов, благодаря которым удалось добиться μ < 0. Несомненно, структуру, изображенную на Рис.2, сложно назвать материалом в традиционном смысле этого слова, поскольку она состоит из отдельных макроскопических объектов. Между тем, данная структура «оптимизирована» для микроволнового излучения, длина волны которого значительного больше отдельных структурных элементов метаматериала. Поэтому с точки зрения микроволн последний также однороден, как например, оптическое стекло для видимого света. Последовательно уменьшая размеры структурных элементов можно создавать метаматериалы с отрицательным показателем преломления для терагерцового и инфракрасного диапазонов спектра. Ученые ожидают, что благодаря достижениям современных нанотехнологий в самое ближайшее время будут созданы метаматериалы и для видимого диапазона спектра.

С точки зрения физики метаматериалы с отрицательным показателем преломления являются антиподами обычных материалов. В случае отрицательного показателя преломления происходит обращение фазовой скорости электромагнитного излучения; допплеровский сдвиг происходит в противоположную сторону; черенковское излучение от движущейся заряженной частицы происходит не вперед, а назад; собирающие линзы становятся рассеивающими и наоборот... И все это - лишь небольшая часть тех удивительных явлений, которые возможны для метаматериалов с отрицательным показателем преломления. Практическое использование таких материалов, в первую очередь, связано с возможностью создания на их основе терагерцовой оптики, что, в свою очередь, приведет к развитию метеорологии и океанографии, появлению радаров с новыми свойствами и средств всепогодной навигации, устройств дистанционной диагностики качества деталей и систем безопасности, позволяющих обнаружить под одеждой оружие, а также уникальных медицинских приборов.

Литература

    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters 84 (2000) 4184.

Читайте также: